
https://sqai.jp/

https://sqai.jp/

•

•

•

•

•

•

•

•

•

•

•

•

•

•

0 1 bit

1 bit: "0" or "1"
2 bits: "00", "01", "10", "11"

...
N bits: 2N

2" " qubit

1 qubit: " "

1 qubit
2

2 qubits
4

N qubits

 2N

1 qubit

qubit

N-qubit

2N bit

•
•
•
• ...

" " " "

=

wikipedia" ", " "

N
2N × 2N

2N

• " "
•

 50 qubits

“ ”

Cf. H. De Raedt, et al., Comput. Phys. Commun. 237, 47 (2019).

N
2N × 2N

2N

• " "
•

 50 qubits

“ ”

Cf. H. De Raedt, et al., Comput. Phys. Commun. 237, 47 (2019).

•

•

•

•

•

•

•

A B

M

 
SVD

N×M

rank(A) =

M R R  

A =

:M×N
(M ≦ N)

:M×M :R×R
≃

:(M,N)×R:(M,N)×M

N×M

rank(A) =

M R R  

A =

:M×N
(M ≦ N)

:M×M :R×R
≃

:(M,N)×R:(M,N)×M

:

*

<latexit sha1_base64="XkC8uXv0uT1Qilx+79HHlBouX2k=">AAACZ3icjVG7SgNBFD1ZXzE+EhVEsFFDxCrMiqBYBW0s4yMPSELYXSfJkH2xuwnE4A9Y2EawUhARP8PGH7DwE8RSwcbCu5sFsYh6h5l758w9956ZUW1duB5jzxFpaHhkdCw6HpuYnJqOJ2Zm867VcjSe0yzdcoqq4nJdmDznCU/nRdvhiqHqvKA2d/3zQps7rrDMI69j84qh1E1RE5ri+VA564pqIimnWWBLg4MkQstaiVuUcQwLGlowwGHCo1iHApdGCTIYbMIq6BLmUCSCc45TxIjboixOGQqhTVrrtCuFqEl7v6YbsDXqotN0iLmEFHtid+yNPbJ79sI+B9bqBjV8LR3yap/L7Wr8bOHw40+WQd5D45v1q2YPNWwFWgVptwPEv4XW57dPem+H2wep7iq7Zq+k/4o9swe6gdl+1272+cElYv/7gPx6WmZpeX8jmdkJvyKKRaxgjd57ExnsIYsc9W3gHD1cRF6kuDQvLfRTpUjImcMPk5a/AI6fiyk=</latexit>

~eN

~O(N)

•

•

1

2

• (n n

" "

...

•

•

•

n n

A BC

AB

C

D

<latexit sha1_base64="XkC8uXv0uT1Qilx+79HHlBouX2k=">AAACZ3icjVG7SgNBFD1ZXzE+EhVEsFFDxCrMiqBYBW0s4yMPSELYXSfJkH2xuwnE4A9Y2EawUhARP8PGH7DwE8RSwcbCu5sFsYh6h5l758w9956ZUW1duB5jzxFpaHhkdCw6HpuYnJqOJ2Zm867VcjSe0yzdcoqq4nJdmDznCU/nRdvhiqHqvKA2d/3zQps7rrDMI69j84qh1E1RE5ri+VA564pqIimnWWBLg4MkQstaiVuUcQwLGlowwGHCo1iHApdGCTIYbMIq6BLmUCSCc45TxIjboixOGQqhTVrrtCuFqEl7v6YbsDXqotN0iLmEFHtid+yNPbJ79sI+B9bqBjV8LR3yap/L7Wr8bOHw40+WQd5D45v1q2YPNWwFWgVptwPEv4XW57dPem+H2wep7iq7Zq+k/4o9swe6gdl+1272+cElYv/7gPx6WmZpeX8jmdkJvyKKRaxgjd57ExnsIYsc9W3gHD1cRF6kuDQvLfRTpUjImcMPk5a/AI6fiyk=</latexit>

~eN

~O(N)

 =

EE

 ρA

A B

Area Law
EE

EE
J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys, 277, 82 (2010)

(c.f. random vector)

(d

•

•

•

•

•

•

•

<latexit sha1_base64="XkC8uXv0uT1Qilx+79HHlBouX2k=">AAACZ3icjVG7SgNBFD1ZXzE+EhVEsFFDxCrMiqBYBW0s4yMPSELYXSfJkH2xuwnE4A9Y2EawUhARP8PGH7DwE8RSwcbCu5sFsYh6h5l758w9956ZUW1duB5jzxFpaHhkdCw6HpuYnJqOJ2Zm867VcjSe0yzdcoqq4nJdmDznCU/nRdvhiqHqvKA2d/3zQps7rrDMI69j84qh1E1RE5ri+VA564pqIimnWWBLg4MkQstaiVuUcQwLGlowwGHCo1iHApdGCTIYbMIq6BLmUCSCc45TxIjboixOGQqhTVrrtCuFqEl7v6YbsDXqotN0iLmEFHtid+yNPbJ79sI+B9bqBjV8LR3yap/L7Wr8bOHw40+WQd5D45v1q2YPNWwFWgVptwPEv4XW57dPem+H2wep7iq7Zq+k/4o9swe6gdl+1272+cElYv/7gPx6WmZpeX8jmdkJvyKKRaxgjd57ExnsIYsc9W3gHD1cRF6kuDQvLfRTpUjImcMPk5a/AI6fiyk=</latexit>

 (MPS)

index i

MPS

(U. Schollwöck, Annals. of Physics 326, 96 (2011))
(R. Orús, Annals. of Physics 349, 117 (2014))

Good reviews:

• MPS "tensor train decomposition"
(I. V. Oseledets, SIAM J. Sci. Comput. 33, 2295 (2011))

N

• 1×1 " " () MPS

MPS

SVD of

…
 = aN/2

(row) (column)

<latexit sha1_base64="sUfwMe83hWkdG+Tm2dWYlfxOS9Q=">AAACi3ichVG7SgNBFD2ur/iIidoINsEQsQoTFQxBQRDBUqN5QAxhd53EIftidxOIwR8QW7WwUrAQ/8DWxh+w8BPEUsHGwrubBdFgvMPMnDlzz50zXMXShOMy9twn9Q8MDg2HRkbHxsMTkejkVN4xG7bKc6qpmXZRkR2uCYPnXOFqvGjZXNYVjReU+oZ3X2hy2xGmsee2LF7W5ZohqkKVXaKya7FKNM6SzI9YN0gFII4gts3oPfZxABMqGtDBYcAlrEGGQ6OEFBgs4spoE2cTEv49xzFGSdugLE4ZMrF1Wmt0KgWsQWevpuOrVXpFo2mTMoYEe2K37I09sjv2wj7/rNX2a3heWrQrHS23KpGTmd2Pf1U67S4Ov1U9PbuoIu17FeTd8hnvF2pH3zy6eNvNZBPteXbNXsn/FXtmD/QDo/mu3uzw7GUPPwp58at4iNqU+t2UbpBfTKYI7yzH19NBw0KYxRwWqCsrWMcWtpGjV6o4xRnOpbC0JGWk1U6q1BdopvEjpM0vUOWQ/w==</latexit>

SVD
<latexit sha1_base64="L13w9FcQQQNeHkVU7HgiqCk7TjU=">AAACjHichVFNS8NAEH2N31XbqhfBS7EonmQiBYsiKIJ41NaqoKUkcVtD0yQkaaEW/4Dg1R48KXgQ/4FXL/4BD/0J4lHBiwcnaUC0qLPs7tu382bfMqpt6K5H1I5IPb19/QODQ9HhkdFYPDE2vutaNUcTec0yLGdfVVxh6KbIe7pniH3bEUpVNcSeWln37/fqwnF1y9zxGrYoVJWyqZd0TfGYyq0V5WIiRfMURLIbyCFIIYwtK3GPQxzBgoYaqhAw4TE2oMDlcQAZBJu5AprMOYz04F7gFFHW1jhLcIbCbIXXMp8OQtbks1/TDdQav2LwdFiZxAw90S290iPd0TN9/FqrGdTwvTR4VztaYRfjZ5O5939VVd49HH+p/vTsoYRM4FVn73bA+L/QOvr6Ses1t5Sdac7SNb2w/ytq0wP/wKy/aTfbInv5hx+VvQRVfMRtkn82pRvsLszLjLfTqdVM2LBBTGEac9yVRaxiE1vI8ytlnOMCLSkmpaVlaaWTKkVCzQS+hbTxCXBYkX0=</latexit>

<latexit sha1_base64="8FBqIWTq8AjjI6BmosvI9tk8990=">AAACjHichVHLSsNAFD2Nr1q1rboR3BSL4qrcFkFRBEUQl31YFbSUJI41NE1Ckha0+AOCW7twpeBC/AO3bvwBF/0EcVnBjQtv0oCoWO8wM2fO3HPnDFexdM1xidohqa9/YHAoPBwZGR2LxuLjEzuOWbdVUVRN3bT3FNkRumaIoqu5utizbCHXFF3sKtUN7363IWxHM41t98QSpZpcMbQjTZVdpgrr5Uw5nqQU+ZH4DdIBSCKIrBl/wAEOYUJFHTUIGHAZ65Dh8NhHGgSLuRKazNmMNP9e4AwR1tY5S3CGzGyV1wqf9gPW4LNX0/HVKr+i87RZmcAsPdMddeiJ7umFPv6s1fRreF5OeFe6WmGVY+dThfd/VTXeXRx/qXp6dnGEJd+rxt4tn/F+oXb1jdNWp7Ccn23O0Q29sv9ratMj/8BovKm3OZG/6uFHYS9+FQ9xm9I/m/Ib7GRSaca5heTaUtCwMKYxg3nuyiLWsIUsivxKBRe4REuKSgvSirTaTZVCgWYS30La/ARyfpF+</latexit>

<latexit sha1_base64="Jp2pqQTLywctr+veTWPVGj6lYTI=">AAACjHichVHLSsNAFD2Nr1q1rboR3BSL4qrcFkFRBFEQl31YFbSUJI41NE1Ckha0+AOCW7twpeBC/AO3bvwBF/0EcVnBjQtv0oCoWO8wM2fO3HPnDFexdM1xidohqa9/YHAoPBwZGR2LxuLjEzuOWbdVUVRN3bT3FNkRumaIoqu5utizbCHXFF3sKtUN7363IWxHM41t98QSpZpcMbQjTZVdpgrr5Uw5nqQU+ZH4DdIBSCKIrBl/wAEOYUJFHTUIGHAZ65Dh8NhHGgSLuRKazNmMNP9e4AwR1tY5S3CGzGyV1wqf9gPW4LNX0/HVKr+i87RZmcAsPdMddeiJ7umFPv6s1fRreF5OeFe6WmGVY+dThfd/VTXeXRx/qXp6dnGEJd+rxt4tn/F+oXb1jdNWp7Ccn23O0Q29sv9ratMj/8BovKm3OZG/6uFHYS9+FQ9xm9I/m/Ib7GRSaca5heTaUtCwMKYxg3nuyiLWsIUsivxKBRe4REuKSgvSirTaTZVCgWYS30La/AR0ppF/</latexit>

<latexit sha1_base64="g7sMIzFUCM+eQGbsuhsu+FE5B5w=">AAACjHichVHLSsNAFD2Nr1ofrboR3BRLxVWZiKAoQkEQl9paLdRSkjitQ9MkJGmhFn9AcGsXrhRciH/g1o0/4KKfIC4ruHHhTRoQLdY7zMyZM/fcOcNVLV04LmOdkDQ0PDI6Fh6PTExOTUdjM7OHjlm3NZ7TTN2086ricF0YPOcKV+d5y+ZKTdX5kVrd9u6PGtx2hGkcuE2LF2tKxRBloSkuUdlcSS7FEizF/Ij3AzkACQSxZ8YecYwTmNBQRw0cBlzCOhQ4NAqQwWARV0SLOJuQ8O85zhEhbZ2yOGUoxFZprdCpELAGnb2ajq/W6BWdpk3KOJLshd2zLntmD+yVff5Zq+XX8Lw0aVd7Wm6Vohfz2Y9/VTXaXZx+qwZ6dlHGuu9VkHfLZ7xfaD1946zdzW5kkq0ldsveyP8N67An+oHReNfu9nnmeoAflbz4VTxEbZJ/N6UfHK6kZML7q4n0etCwMBawiGXqyhrS2MUecvRKBZe4QluallalTWmrlyqFAs0cfoS08wWbeJGR</latexit>

<latexit sha1_base64="dZPsaUyLZl7/RF5PKPzrVtwgpNc=">AAAClHichVHLSsNAFL2Nr1ofrQoiuCmWiqsyEcEiLgpFcCV92Ae0tSTptA7Ni2RaqMUfcC8uBEXBhfgHbt34Ay76CeKyghsX3qQB0WK9YTJnztxz58xc2VSZzQnp+YSx8YnJKf90YGZ2bj4YWljM20bLUmhOMVTDKsqSTVWm0xxnXKVF06KSJqu0IDeTzn6hTS2bGfoh75i0okkNndWZInGkSvmqeFSuSY0GtaqhCIkRN8LDQPRABLxIGaFHKEMNDFCgBRpQ0IEjVkECG78SiEDARK4CXeQsRMzdp3AKAdS2MItihoRsE/8NXJU8Vse1U9N21QqeouKwUBmGKHkh96RPnskDeSWff9bqujUcLx2c5YGWmtXg2Ur241+VhjOH42/VSM8c6hB3vTL0brqMcwtloG+fXPSzO5lod53ckjf0f0N65AlvoLfflbs0zVyO8COjF7eKg7BN4u+mDIP8ZkxEnN6KJOJew/ywCmuwgV3ZhgTsQwpy7ruewxVcC8vCrpAU9gapgs/TLMGPEA6+AJvClQY=</latexit><latexit sha1_base64="ZXHnAp5TLfp0z6gTAIaz8srQNB4=">AAACknichVG7SgNBFD2ur/hMfBSCTTBErMKsCIqVksbCwld8oCHsbiZxyOyD3U1Agz9ga2GhFgoW4h/Y2vgDFn6CWEawsfDuZkE0GO8wM2fO3HPnDFd3pPB8xl46lM6u7p7eWF//wODQcDwxMrrt2VXX4DnDlra7q2sel8LiOV/4ku86LtdMXfIdvZIN7ndq3PWEbW35Rw7Pm1rZEiVhaD5ReweSUotaQS0kUizDwki2AjUCKUSxZicecIAibBiowgSHBZ+whAaPxj5UMDjE5VEnziUkwnuOE/STtkpZnDI0Yiu0lum0H7EWnYOaXqg26BVJ0yVlEmn2zO5Ygz2xe/bKPv+sVQ9rBF6OaNebWu4U4qcTmx//qkzafRx+q9p69lHCQuhVkHcnZIJfGE197fi8sbm4ka5Psxv2Rv6v2Qt7pB9YtXfjdp1vXLTxo5OXsEqAqE3q76a0gu3ZjEp4fS61tBA1LIZJTGGGujKPJaxgDTl6xcQZLnGljCuLyrKSbaYqHZFmDD9CWf0CtaOUNQ==</latexit>

<latexit sha1_base64="L13w9FcQQQNeHkVU7HgiqCk7TjU=">AAACjHichVFNS8NAEH2N31XbqhfBS7EonmQiBYsiKIJ41NaqoKUkcVtD0yQkaaEW/4Dg1R48KXgQ/4FXL/4BD/0J4lHBiwcnaUC0qLPs7tu382bfMqpt6K5H1I5IPb19/QODQ9HhkdFYPDE2vutaNUcTec0yLGdfVVxh6KbIe7pniH3bEUpVNcSeWln37/fqwnF1y9zxGrYoVJWyqZd0TfGYyq0V5WIiRfMURLIbyCFIIYwtK3GPQxzBgoYaqhAw4TE2oMDlcQAZBJu5AprMOYz04F7gFFHW1jhLcIbCbIXXMp8OQtbks1/TDdQav2LwdFiZxAw90S290iPd0TN9/FqrGdTwvTR4VztaYRfjZ5O5939VVd49HH+p/vTsoYRM4FVn73bA+L/QOvr6Ses1t5Sdac7SNb2w/ytq0wP/wKy/aTfbInv5hx+VvQRVfMRtkn82pRvsLszLjLfTqdVM2LBBTGEac9yVRaxiE1vI8ytlnOMCLSkmpaVlaaWTKkVCzQS+hbTxCXBYkX0=</latexit>

<latexit sha1_base64="ZJBeaV1Kz1gTxGyxRTby2eZDpYE=">AAACjHichVFNS8NAEH2N31XbqhfBS7EonmQiBYsiiIJ41NaqoKUkcVtD0yQkaaEW/4Dg1R48KXgQ/4FXL/4BD/0J4lHBiwcnaUC0qLPs7tu382bfMqpt6K5H1I5IPb19/QODQ9HhkdFYPDE2vutaNUcTec0yLGdfVVxh6KbIe7pniH3bEUpVNcSeWln37/fqwnF1y9zxGrYoVJWyqZd0TfGYyq0V5WIiRfMURLIbyCFIIYwtK3GPQxzBgoYaqhAw4TE2oMDlcQAZBJu5AprMOYz04F7gFFHW1jhLcIbCbIXXMp8OQtbks1/TDdQav2LwdFiZxAw90S290iPd0TN9/FqrGdTwvTR4VztaYRfjZ5O5939VVd49HH+p/vTsoYRM4FVn73bA+L/QOvr6Ses1t5Sdac7SNb2w/ytq0wP/wKy/aTfbInv5hx+VvQRVfMRtkn82pRvsLszLjLfTqdVM2LBBTGEac9yVRaxiE1vI8ytlnOMCLSkmpaVlaaWTKkVCzQS+hbTxCXKAkX4=</latexit>

<latexit sha1_base64="ZXHnAp5TLfp0z6gTAIaz8srQNB4=">AAACknichVG7SgNBFD2ur/hMfBSCTTBErMKsCIqVksbCwld8oCHsbiZxyOyD3U1Agz9ga2GhFgoW4h/Y2vgDFn6CWEawsfDuZkE0GO8wM2fO3HPnDFd3pPB8xl46lM6u7p7eWF//wODQcDwxMrrt2VXX4DnDlra7q2sel8LiOV/4ku86LtdMXfIdvZIN7ndq3PWEbW35Rw7Pm1rZEiVhaD5ReweSUotaQS0kUizDwki2AjUCKUSxZicecIAibBiowgSHBZ+whAaPxj5UMDjE5VEnziUkwnuOE/STtkpZnDI0Yiu0lum0H7EWnYOaXqg26BVJ0yVlEmn2zO5Ygz2xe/bKPv+sVQ9rBF6OaNebWu4U4qcTmx//qkzafRx+q9p69lHCQuhVkHcnZIJfGE197fi8sbm4ka5Psxv2Rv6v2Qt7pB9YtXfjdp1vXLTxo5OXsEqAqE3q76a0gu3ZjEp4fS61tBA1LIZJTGGGujKPJaxgDTl6xcQZLnGljCuLyrKSbaYqHZFmDD9CWf0CtaOUNQ==</latexit>

<latexit sha1_base64="4XliTMgEVJ4VD+725UpqSqsuQoA=">AAACknichVG7SgNBFD1ZXzG+4qMQbMQQsZJJEAxWERsLizyMRhIJu+uog7MPdjcBDf6ArYWFWihYiH9ga+MPWOQTxDKCjYV3Nwuiot5hZs6cuefOGa5mS+F6jLUiSld3T29ftD82MDg0PBIfHdtwrbqj85JuScspa6rLpTB5yROe5GXb4aqhSb6pHaz495sN7rjCMte9Q5tvG+qeKXaFrnpEbVUlpe6otXQtnmDzLIjpnyAVggTCyFnxe1SxAws66jDAYcIjLKHCpVFBCgw2cdtoEucQEsE9xzFipK1TFqcMldgDWvfoVAlZk85+TTdQ6/SKpOmQchpJ9sRuWZs9sjv2zN5/rdUMavheDmnXOlpu10ZOJotv/6oM2j3sf6r+9OxhF5nAqyDvdsD4v9A7+sbRWbu4VEg2Z9k1eyH/V6zFHugHZuNVv8nzwvkffjTyElTxEbUp9b0pP8FGej5FOL+QyGbChkUxhRnMUVcWkcUqcijRKwZOcYFLZUJZUpaVlU6qEgk14/gSytoHt8mUNg==</latexit>

(row) (column)

<latexit sha1_base64="sUfwMe83hWkdG+Tm2dWYlfxOS9Q=">AAACi3ichVG7SgNBFD2ur/iIidoINsEQsQoTFQxBQRDBUqN5QAxhd53EIftidxOIwR8QW7WwUrAQ/8DWxh+w8BPEUsHGwrubBdFgvMPMnDlzz50zXMXShOMy9twn9Q8MDg2HRkbHxsMTkejkVN4xG7bKc6qpmXZRkR2uCYPnXOFqvGjZXNYVjReU+oZ3X2hy2xGmsee2LF7W5ZohqkKVXaKya7FKNM6SzI9YN0gFII4gts3oPfZxABMqGtDBYcAlrEGGQ6OEFBgs4spoE2cTEv49xzFGSdugLE4ZMrF1Wmt0KgWsQWevpuOrVXpFo2mTMoYEe2K37I09sjv2wj7/rNX2a3heWrQrHS23KpGTmd2Pf1U67S4Ov1U9PbuoIu17FeTd8hnvF2pH3zy6eNvNZBPteXbNXsn/FXtmD/QDo/mu3uzw7GUPPwp58at4iNqU+t2UbpBfTKYI7yzH19NBw0KYxRwWqCsrWMcWtpGjV6o4xRnOpbC0JGWk1U6q1BdopvEjpM0vUOWQ/w==</latexit>

<latexit sha1_base64="4XliTMgEVJ4VD+725UpqSqsuQoA=">AAACknichVG7SgNBFD1ZXzG+4qMQbMQQsZJJEAxWERsLizyMRhIJu+uog7MPdjcBDf6ArYWFWihYiH9ga+MPWOQTxDKCjYV3Nwuiot5hZs6cuefOGa5mS+F6jLUiSld3T29ftD82MDg0PBIfHdtwrbqj85JuScspa6rLpTB5yROe5GXb4aqhSb6pHaz495sN7rjCMte9Q5tvG+qeKXaFrnpEbVUlpe6otXQtnmDzLIjpnyAVggTCyFnxe1SxAws66jDAYcIjLKHCpVFBCgw2cdtoEucQEsE9xzFipK1TFqcMldgDWvfoVAlZk85+TTdQ6/SKpOmQchpJ9sRuWZs9sjv2zN5/rdUMavheDmnXOlpu10ZOJotv/6oM2j3sf6r+9OxhF5nAqyDvdsD4v9A7+sbRWbu4VEg2Z9k1eyH/V6zFHugHZuNVv8nzwvkffjTyElTxEbUp9b0pP8FGej5FOL+QyGbChkUxhRnMUVcWkcUqcijRKwZOcYFLZUJZUpaVlU6qEgk14/gSytoHt8mUNg==</latexit>

<latexit sha1_base64="kB9Klgr4xbQ/3/GmYcKS38zn5jQ=">AAACjHichVG7SgNBFD1ZX/GVRG0EGzEoVmESAgZFCAhiaRJjAiphd53EIZvdZXcSiMEfEGy1sFKwEP/A1sYfsMgniKWCjYV3NwuiYrzDzJw5c8+dM1zNNoQrGeuGlIHBoeGR8OjY+MRkJBqbmt51raaj86JuGZZT1lSXG8LkRSmkwcu2w9WGZvCSVt/w7kst7rjCMndk2+YHDbVmiqrQVUlUoVhJVWJxlmB+zP8GyQDEEcS2FbvHPg5hQUcTDXCYkIQNqHBp7CEJBpu4A3SIcwgJ/57jBGOkbVIWpwyV2DqtNTrtBaxJZ6+m66t1esWg6ZByHovsid2yV/bI7tgz+/izVsev4Xlp0671tNyuRE9nC+//qhq0Sxx9qfp6lqgi43sV5N32Ge8Xek/fOr54LazmFztL7Jq9kP8r1mUP9AOz9abf5Hj+so8fjbz4VTxEbUr+bMpvsJtKJAnn0vFsJmhYGHNYwDJ1ZQVZbGEbRXqlhjOc40KJKGllTVnvpSqhQDODb6FsfgKdnpGS</latexit> <latexit sha1_base64="au4HHAkk6o/ZPget5TZ6mMyy7kY=">AAAClHichVHLSsNAFL2Nr1ofrQoiuCmWiqsyLYJFXBSK4Er6sA9oa0nSMYbmRTIt1OIPuBcXgqLgQvwDt278ARf9BHFZwY0Lb6YB0WK9YTJnztxz58xcydJUhxHS8wlj4xOTU/7pwMzs3HwwtLBYdMyWLdOCbGqmXZZEh2qqQQtMZRotWzYVdUmjJamZdvdLbWo7qmkcsI5Fa7qoGOqRKosMqUqxnjisNkRFoXY9FCExwiM8DOIeiIAXGTP0CFVogAkytEAHCgYwxBqI4OBXgTgQsJCrQRc5G5HK9ymcQgC1LcyimCEi28S/gquKxxq4dms6XC3jKRoOG5VhiJIXck/65Jk8kFfy+WetLq/heungLA201KoHz1byH/+qdJwZHH+rRnpmcARJ7lVF7xZn3FvIA3375KKf385Fu+vklryh/xvSI094A6P9Lt9lae5yhB8JvfAqLsI2xX83ZRgUE7E44uxmJJX0GuaHVViDDezKFqRgDzJQ4O96DldwLSwLO0Ja2B2kCj5PswQ/Qtj/Ap3wlQc=</latexit>

<latexit sha1_base64="6m/gbzqlDKBTUkwq2Gwhy8OFn50=">AAAClXichVHLSsNAFD2N73fVhYKbYqm4KhMRFEEoKuJOq1YFW0qSTjU4TUIyLWjxB/wAXbjwAS7EP3Drxh9w0U8QlxXcuPAmDYgW6x1m5syZe+6c4eqOMD3JWC2itLV3dHZ19/T29Q8MDkWHR3Y8u+waPGPYwnb3dM3jwrR4RppS8D3H5VpJF3xXP1r273cr3PVM29qWxw7PlbQDyyyahiaJymYFpRa0vLqUV/PROEuyIGLNQA1BHGFs2NFHZFGADQNllMBhQRIW0ODR2IcKBoe4HKrEuYTM4J7jFL2kLVMWpwyN2CNaD+i0H7IWnf2aXqA26BVB0yVlDAn2wu5ZnT2zB/bKPv+sVQ1q+F6OadcbWu7kh87Gtz7+VZVolzj8VrX0LFHEfODVJO9OwPi/MBr6yslFfWthM1GdYrfsjfzfsBp7oh9YlXfjLs03L1v40clLUMVH1Cb1d1Oawc5MUiWcno2n5sOGdWMCk5imrswhhTVsIEOvODjHFa6VMWVRWVFWG6lKJNSM4kco61/0f5Ul</latexit>

a:

 = aN/2=

 = χ

N N

χ

• “ ” N S ~ O(1)

 N

• EE N N

χ
χ

•
• EE S = log N

“ "

Tree tensor network (TTN) Multi-scale Entanglement
Renormalization Ansatz

MERA

2 MPS TPS

PEPS (Projected Entangled-Pair State)
(F. Verstraete and J. Cirac, arXiv:cond-mat/0407066)

(AKLT, T. Nishino, K. Okunishi, …) TPS (Tensor Product State)

2 TPS

4+1

s
Virtual i, j, k, l

D
D→∞

TPS

TPS

•

•

•

•

•

•

•

<latexit sha1_base64="XkC8uXv0uT1Qilx+79HHlBouX2k=">AAACZ3icjVG7SgNBFD1ZXzE+EhVEsFFDxCrMiqBYBW0s4yMPSELYXSfJkH2xuwnE4A9Y2EawUhARP8PGH7DwE8RSwcbCu5sFsYh6h5l758w9956ZUW1duB5jzxFpaHhkdCw6HpuYnJqOJ2Zm867VcjSe0yzdcoqq4nJdmDznCU/nRdvhiqHqvKA2d/3zQps7rrDMI69j84qh1E1RE5ri+VA564pqIimnWWBLg4MkQstaiVuUcQwLGlowwGHCo1iHApdGCTIYbMIq6BLmUCSCc45TxIjboixOGQqhTVrrtCuFqEl7v6YbsDXqotN0iLmEFHtid+yNPbJ79sI+B9bqBjV8LR3yap/L7Wr8bOHw40+WQd5D45v1q2YPNWwFWgVptwPEv4XW57dPem+H2wep7iq7Zq+k/4o9swe6gdl+1272+cElYv/7gPx6WmZpeX8jmdkJvyKKRaxgjd57ExnsIYsc9W3gHD1cRF6kuDQvLfRTpUjImcMPk5a/AI6fiyk=</latexit>

(a) (b) (c)
PEPS, TPS (for 2d system)

~eN

~O(N)

N

•
•

•
• …

•

*

256=28

25
6=

28

256 × 256 → 216

→ 16- (a = 2)

→ 2N →N- (a = 2)

<latexit sha1_base64="vOJX0Msp2QRw56wrP2TXE8H3N2E=">AAACs3ichVE9LwRBGH6s7+9DI9FcXMhpZE4IkRCJRnk+DnHHZXfMMbFf2d3bhHV/QKFVqEgUolVJaDT+gMJPECWJRuHdvQ1B8E5m5pln3uedZ/Jqti5dj7GHGqW2rr6hsam5pbWtvaMz0dW97Fplh4sct3TLWdVUV+jSFDlPerpYtR2hGpouVrSd2fB+xReOKy1zydu1xbqhbpmyJLnqEVVMpLPpgi944FeGklPJQslRebBfyLryg97fGKkEa5ViIsWGWRTJnyATgxTiyFqJKxSwCQscZRgQMOER1qHCpZFHBgw2cesIiHMIyeheoIIW0pYpS1CGSuwOrVt0ysesSeewphupOb2i03RImcQAu2fn7JndsQv2yN5+rRVENUIvu7RrVa2wi50HvYuv/6oM2j1sf6r+9OyhhInIqyTvdsSEv+BVvb939Lw4uTAQDLJT9kT+T9gDu6UfmP4LP5sXC8d/+NHIS1QlRNSmzPem/ATLI8MZwvOjqZnpuGFN6EM/0tSVccxgDlnk6JVDXOIaN8qYklc0ZbOaqtTEmh58CcV4B51poSY=</latexit>

Z.-Y. Han et al, Phys. Rev. X 8, 031012 (2018).

N
<latexit sha1_base64="5YuymMeSFTMziBdE2RiUWiwu1nM=">AAACt3ichVHLShxBFD22JvEZJ8lGyKZxULIQuS2BxEBA4iar4CMzCrYZutsap7Bfdtc0aNM/4NKNi6wUsgj5geBOs8kPZOEniEsFNy683dMQVNRbVNWpU/fcOsW1Q1fGiuikS+vuefL0WW9f/8Dg0PPhyouX9ThoR46oOYEbRMu2FQtX+qKmpHLFchgJy7NdsWRvzOb3S4mIYhn4X9VWKFY9a92XTelYiqlGZcJMhJMmmW5KXzc9S7VsO61n+kfdTGnCMLNvqRko6YlY/5I1KlWapCL0u8AoQRVlzAWVQ5hYQwAHbXgQ8KEYu7AQ81iBAULI3CpS5iJGsrgXyNDP2jZnCc6wmN3gdZ1PKyXr8zmvGRdqh19xeUas1DFG/+gnndNf+kWndHVvrbSokXvZ4t3uaEXYGN4ZWbx8VOXxrtD6r3rQs0IT7wuvkr2HBZP/wunok+2988UPC2PpOB3QGfvfpxP6wz/wkwvnx7xY+P6AH5u9FFVyxG0ybjflLqhPTRqM599WZz6VDevFa4ziDXflHWbwGXOo8Su7+I0jHGvTWkNraq1OqtZVal7hRmib1wPxon8=</latexit>

<latexit sha1_base64="vOJX0Msp2QRw56wrP2TXE8H3N2E=">AAACs3ichVE9LwRBGH6s7+9DI9FcXMhpZE4IkRCJRnk+DnHHZXfMMbFf2d3bhHV/QKFVqEgUolVJaDT+gMJPECWJRuHdvQ1B8E5m5pln3uedZ/Jqti5dj7GHGqW2rr6hsam5pbWtvaMz0dW97Fplh4sct3TLWdVUV+jSFDlPerpYtR2hGpouVrSd2fB+xReOKy1zydu1xbqhbpmyJLnqEVVMpLPpgi944FeGklPJQslRebBfyLryg97fGKkEa5ViIsWGWRTJnyATgxTiyFqJKxSwCQscZRgQMOER1qHCpZFHBgw2cesIiHMIyeheoIIW0pYpS1CGSuwOrVt0ysesSeewphupOb2i03RImcQAu2fn7JndsQv2yN5+rRVENUIvu7RrVa2wi50HvYuv/6oM2j1sf6r+9OyhhInIqyTvdsSEv+BVvb939Lw4uTAQDLJT9kT+T9gDu6UfmP4LP5sXC8d/+NHIS1QlRNSmzPem/ATLI8MZwvOjqZnpuGFN6EM/0tSVccxgDlnk6JVDXOIaN8qYklc0ZbOaqtTEmh58CcV4B51poSY=</latexit>

= 0 1

Z.-Y. Han et al, Phys. Rev. X 8, 031012 (2018).

<latexit sha1_base64="uw8KgSzv2MgXTgPinGcdthpJmzE=">AAACs3ichVG7SsRAFD3G1/petRFsgouyNjIriiIIgo3l+lgVdzUkcVwH8yLJBta4P2Bha2GlYCG2VoI2Nv6AhZ8glgo2Ft5kA6Ki3pCZc8/cc+cMV3MM4fmMPTZIjU3NLa2ptvaOzq7unnRv36pnV1ydF3TbsN11TfW4ISxe8IVv8HXH5aqpGXxN25uPztcC7nrCtlb8qsM3TbVsiR2hqz5RSjqb3ZBn5ZJXMZWwFHA9DGo1+aCU90Q2SRUxerA1PqqkM2yMxSH/BLkEZJBE3k5fo4Rt2NBRgQkOCz5hAyo8+orIgcEhbhMhcS4hEZ9z1NBO2gpVcapQid2jtUxZMWEtyqOeXqzW6RaDfpeUMobZA7tgL+yeXbIn9v5rrzDuEXmp0q7VtdxReg4Hlt/+VZm0+9j9VP3p2ccOpmOvgrw7MRO9Qq/rg/3jl+WZpeFwhJ2xZ/J/yh7ZHb3ACl7180W+dPKHH428xF0iRGPKfR/KT7A6PpYjvDiRmZtOBpbCIIaQpalMYQ4LyKNAtxzhCje4lSaloqRJ2/VSqSHR9ONLSOYHAiCg2A==</latexit>

training set no larger than Dmax. As shown in the previous
section, this means that all training patterns are remembered
exactly. As the number of training patterns increases, MPS
with a fixedDmax will eventually fail in remembering exactly
all the training patterns, resulting in L > ln jT j. In this
regime, generations of the model usually deviate from
training patterns (as illustrated in Fig. 3 on the MNIST data
set). We notice that, with jT j increasing, the curves in the
figure deviate from ln jT j continuously. We note that this is
very different from the Hopfield model, where the overlap
between the generation and training samples changes
abruptly due to the first order transition from the retrieval
phase to the spin glass phase.
Figure 2(a) also shows that a largerDmax enables MPS to

remember exactly more patterns and produce smaller L
with the number of patterns jT j fixed. This is quite natural
because enlarging Dmax amounts to the increase of the
parameter number of the model and, hence, enhances the
capacity of the model. In principle, ifDmax ¼ ∞, our model
has infinite capacity, since arbitrary quantum states can be
decomposed into MPS [17]. Clearly, this is an advantage
of our model over the Hopfield model and inverse Ising
model [14], whose maximal model capacity is proportional
to system size.
Careful readers may complain that the inverse Ising

model is not the correct model to compare with, because its
variation with hidden variables, i.e., Boltzmann machines,
do have infinite representation power. Indeed, increasing
the bond dimensions in MPS has similar effects to
increasing the number of hidden variables in other gen-
erative models.
In Fig. 2(b), we plot L as a function of system size N,

trained on jT j ¼ 100 random patterns. As shown in the
figure, with Dmax fixed, L increases linearly with system
size N, which indicates that our model gives a worse

memory capability with a larger system size. This is due to
the fact that keeping the joint distribution of variables
becomes more and more difficult for MPS when the
number of variables increases, especially for long-range
correlated data. This is a drawback of our model when
compared with fully pairwise-connected models such as
the inverse Ising model, which is able to capture long-
distance correlations of the training data easily. Fortunately,
Fig. 2(b) also shows that the decay of memory capability
with system size can be compensated by increasing Dmax.

C. MNIST data set of handwritten digits

In this subsection, we perform experiments on the
MNIST data set [51]. In preparation, we turn the grayscale
images into binary numbers by threshold binarization and
flattened the images row by row into a vector. For the
purpose of unsupervised generative modeling, we do not
need the labels of the digits. Here, we further test the
capacity of the MPS for this larger-scale and more mean-
ingful data set. Then, we investigate its generalization
ability via examining its performance on a separated test
set, which is crucial for generative modeling.

1. Model capacity

Having chosen jT j ¼ 1000MNIST images, we train the
MPS with different maximal bond dimensions Dmax, as
shown in Fig. 3. AsDmax increases, the final L decreases to
its minimum ln jT j, and the images generated become more
and more clear. It is interesting that, with a relatively small
maximum bond dimension, e.g., Dmax ¼ 100, some crucial
features show up, though some of the images were not as
clear as the original ones. For instance, the hooks and loops
that partly resemble the numerals “2,” “3,” and “9” emerge.
These clear characters of handwritten digits illustrate that
the MPS has learned many “prototypes.” Similar feature-to-
prototype transitions in pattern recognitions could also
be observed by using a many-body interaction in the
Hopfield model, or equivalently, using a higher-order
rectified polynomial activation function in the deep neural
networks [52]. It is remarkable that, in our model, this can
be achieved by simply adjusting the maximum bond
dimension of the MPS.
Next, we train another model with the restriction of

Dmax ¼ 800. The NLL on the training data set reaches 16.8,
and many bonds have reached maximal dimension Dmax.
Figure 4 shows the distribution of bond dimensions. Large
bond dimensions are concentrated in the center of the
image, where the variation of the pixels is complex. The
bond dimensions around the top and bottom edge of
the image remain small, because those pixels are always
inactivated in the images. They carry no information and
have no correlations with the remaining part of the image.
Remarkably, although the pixels on the left and right edges
are also white, they also have large bond dimensions

FIG. 3. NLL average of a MPS trained using jT j ¼ 1000
MNIST images of size 28 × 28, with varying maximum bond
dimensions Dmax. The horizontal dashed line indicates the
Shannon entropy of the training set ln jT j, which is also the
minimal value of L. The inset images are generated by the MPS
trained with different Dmax (denoted by the arrows).

UNSUPERVISED GENERATIVE MODELING USING MATRIX … PHYS. REV. X 8, 031012 (2018)

031012-7

Bond dimension of MPS

C
os

t (
N

eg
at

iv
e

Lo
g

Li
ke

lih
oo

d)

because these bonds learn to mediate the correlations
between the rows of the images.
The samples directly generated after training are shown

in Fig. 5(a). We also show a few original samples from the
training set in Fig. 5(b) for comparison. Although many of
the generated images cannot be recognized as digits, some
aspects of the result are worth mentioning. Firstly, the MPS
learned to leave margins blank, which is the most obvious
common feature in the MNIST database. Secondly, the
activated pixels compose pen strokes that can be extracted
from the digits. Finally, a few of the samples could already
be recognized as digits. Unlike the discriminative learning
task carried out in Ref. [32], it seems we need to use much
larger bond dimensions to achieve a good performance in
the unsupervised task. We postulate the reason to be that,
in the classification task, local features of an image are
sufficient for predicting the label. Thus, MPS is not
required to remember longer-range correlation between
pixels. For generative modeling, however, it is necessary
because learning the joint distribution from the data

consists of (but not limited to) learning two-point corre-
lations between pairs of variables that could be far from
each other.
With the MPS restricted to Dmax ¼ 800 and trained with

1000, we carry out image restoration experiments. As shown
in Fig. 6, we remove part of the images in Fig. 5(b) and then
reconstruct the removed pixels (in yellow) using conditional
direct sampling. For column reconstruction, its performance
is remarkable. The reconstructed images in Fig. 6(a) are
almost identical to the original ones in Fig. 5(b). On the other
hand, for row reconstruction in Fig. 6(b), it makes interesting
but reasonable deviations. For instance, for the rightmost
image in the first row, the “1” shape has been bent to a “7.”

2. Generalization ability

In a glimpse of its generalization ability, we also tried
reconstructing MNIST images other than the training
images, as shown in Figs. 6(c) and 6(d). These results
indicate that the MPS has learned crucial features of the
data set, rather than merely memorizing the training
instances. In fact, even as early as only 11 loops trained,
the MPS could perform column reconstruction with similar

FIG. 4. Bond dimensions of the MPS trained with jT j ¼ 1000
MNIST samples, constrained to Dmax ¼ 800. Final average NLL
reaches 16.8. Each pixel in this figure corresponds to the bond
dimension of the right leg of the tensor associated to the identical
coordinate in the original image.

(a) Generated (b) Original

FIG. 5. (a) Images generated from the same MPS as in Fig. 4.
(b) Original images randomly selected from the training set.

(a) column reconstruction on
training images

(b) row reconstruction on training
images

(c) column reconstruction on test
images

(d) row reconstruction on test
images

FIG. 6. Image reconstruction from partial images by direct
sampling with the same MPS as in Fig. 4. (a,b) Restoration of
images in Fig. 5(b), which are selected from the training set. (c,d)
Reconstruction of 16 images chosen from the test set. The test set
contains images from the MNIST database that were not used for
training. The given parts are in black (dark) and the reconstructed
parts are in yellow (light). The reconstructed parts are 12 columns
from either (a,c) the left or the right and (b,d) the top or the bottom.

HAN, WANG, FAN, WANG, and ZHANG PHYS. REV. X 8, 031012 (2018)

031012-8

Images generation

Z.-Y. Han et al, Phys. Rev. X 8, 031012 (2018).

<latexit sha1_base64="vOJX0Msp2QRw56wrP2TXE8H3N2E=">AAACs3ichVE9LwRBGH6s7+9DI9FcXMhpZE4IkRCJRnk+DnHHZXfMMbFf2d3bhHV/QKFVqEgUolVJaDT+gMJPECWJRuHdvQ1B8E5m5pln3uedZ/Jqti5dj7GHGqW2rr6hsam5pbWtvaMz0dW97Fplh4sct3TLWdVUV+jSFDlPerpYtR2hGpouVrSd2fB+xReOKy1zydu1xbqhbpmyJLnqEVVMpLPpgi944FeGklPJQslRebBfyLryg97fGKkEa5ViIsWGWRTJnyATgxTiyFqJKxSwCQscZRgQMOER1qHCpZFHBgw2cesIiHMIyeheoIIW0pYpS1CGSuwOrVt0ysesSeewphupOb2i03RImcQAu2fn7JndsQv2yN5+rRVENUIvu7RrVa2wi50HvYuv/6oM2j1sf6r+9OyhhInIqyTvdsSEv+BVvb939Lw4uTAQDLJT9kT+T9gDu6UfmP4LP5sXC8d/+NHIS1QlRNSmzPem/ATLI8MZwvOjqZnpuGFN6EM/0tSVccxgDlnk6JVDXOIaN8qYklc0ZbOaqtTEmh58CcV4B51poSY=</latexit> <latexit sha1_base64="uw8KgSzv2MgXTgPinGcdthpJmzE=">AAACs3ichVG7SsRAFD3G1/petRFsgouyNjIriiIIgo3l+lgVdzUkcVwH8yLJBta4P2Bha2GlYCG2VoI2Nv6AhZ8glgo2Ft5kA6Ki3pCZc8/cc+cMV3MM4fmMPTZIjU3NLa2ptvaOzq7unnRv36pnV1ydF3TbsN11TfW4ISxe8IVv8HXH5aqpGXxN25uPztcC7nrCtlb8qsM3TbVsiR2hqz5RSjqb3ZBn5ZJXMZWwFHA9DGo1+aCU90Q2SRUxerA1PqqkM2yMxSH/BLkEZJBE3k5fo4Rt2NBRgQkOCz5hAyo8+orIgcEhbhMhcS4hEZ9z1NBO2gpVcapQid2jtUxZMWEtyqOeXqzW6RaDfpeUMobZA7tgL+yeXbIn9v5rrzDuEXmp0q7VtdxReg4Hlt/+VZm0+9j9VP3p2ccOpmOvgrw7MRO9Qq/rg/3jl+WZpeFwhJ2xZ/J/yh7ZHb3ACl7180W+dPKHH428xF0iRGPKfR/KT7A6PpYjvDiRmZtOBpbCIIaQpalMYQ4LyKNAtxzhCje4lSaloqRJ2/VSqSHR9ONLSOYHAiCg2A==</latexit>

MPS

<latexit sha1_base64="h95a+Ijry/w51CZnXTrle3Tc+EI=">AAACznichVHPS9xAFP6M1m7Xqlt7EXoJLhY9KBMpKAVlQZAe19VVwciSjLPusPlFMhvQELwW/wEPPbXQg/Q/6LWX3noSun9C8WihFw99yQZaldoXMvPN99735hueHTgyUoz1h7ThkUejj0tPymNPxycmK8+mdiK/F3LR5L7jh3u2FQlHeqKppHLEXhAKy7UdsWt317P8bizCSPretjoOxIFrHXmyLbmliGpV1jf0VX3BbIcWT4w0MV1LdWw72U5TM+q5rcSMBU/i1JTeXynddDy9Plfk5luVKltkeej3gVGAKoqo+5XPMHEIHxw9uBDwoAg7sBDRtw8DDAFxB0iICwnJPC+QokzaHlUJqrCI7dJ6RKf9gvXonPWMcjWnWxz6Q1LqmGWX7IJds6/sE/vBbv7ZK8l7ZF6OabcHWhG0Js+mt379V+XSrtD5o3rQs0IbK7lXSd6DnMlewQf6+OT8eut1YzZ5yT6wK/L/nvXZF3qBF//kHzdF490DfmzyknfJEI3JuDuU+2BnadEgvPmqWlsrBlbCC8xgjqayjBreoI4m3XKBb/iOvlbXYi3VTgel2lCheY5bob39DfCnrPo=</latexit>

<latexit sha1_base64="GKcB8AnBdg76XFhFem03O3Rkghw=">AAACk3ichVG7SgNBFD1ZX/GZqAiCjRgiVjIrgkGboBY2QmKMilFkd50kS/bF7iQQF3/AWrAQBQUL8Q9sbfwBCz9BLBVsLLy7WRAV9Q4zc+bMPXfOcFXH0D3B2GNMamvv6OyKd/f09vUPJJKDQxueXXc1XtRsw3a3VMXjhm7xotCFwbcclyumavBNtbYU3G82uOvptrUumg7fNZWKpZd1TRFEbe+Yiqiqqr9+uJdMsWkWxvhPIEcghShydvIWO9iHDQ11mOCwIAgbUODRKEEGg0PcLnziXEJ6eM9xiB7S1imLU4ZCbI3WCp1KEWvROajphWqNXjFouqQcR5o9sGv2wu7ZDXti77/W8sMagZcm7WpLy529xNFo4e1flUm7QPVT9adngTIyoVedvDshE/xCa+kbBycvhfm1tD/JLtkz+b9gj+yOfmA1XrWrPF87/cOPSl7CKgGiNsnfm/ITbMxMy4Tzs6lsJmpYHGOYwBR1ZQ5ZrCCHIr1i4RhnOJdGpAVpUVpupUqxSDOMLyGtfgCPIJUI</latexit>

*

<latexit sha1_base64="vOJX0Msp2QRw56wrP2TXE8H3N2E=">AAACs3ichVE9LwRBGH6s7+9DI9FcXMhpZE4IkRCJRnk+DnHHZXfMMbFf2d3bhHV/QKFVqEgUolVJaDT+gMJPECWJRuHdvQ1B8E5m5pln3uedZ/Jqti5dj7GHGqW2rr6hsam5pbWtvaMz0dW97Fplh4sct3TLWdVUV+jSFDlPerpYtR2hGpouVrSd2fB+xReOKy1zydu1xbqhbpmyJLnqEVVMpLPpgi944FeGklPJQslRebBfyLryg97fGKkEa5ViIsWGWRTJnyATgxTiyFqJKxSwCQscZRgQMOER1qHCpZFHBgw2cesIiHMIyeheoIIW0pYpS1CGSuwOrVt0ysesSeewphupOb2i03RImcQAu2fn7JndsQv2yN5+rRVENUIvu7RrVa2wi50HvYuv/6oM2j1sf6r+9OyhhInIqyTvdsSEv+BVvb939Lw4uTAQDLJT9kT+T9gDu6UfmP4LP5sXC8d/+NHIS1QlRNSmzPem/ATLI8MZwvOjqZnpuGFN6EM/0tSVccxgDlnk6JVDXOIaN8qYklc0ZbOaqtTEmh58CcV4B51poSY=</latexit>

CHENG, WANG, XIANG, AND ZHANG PHYSICAL REVIEW B 99, 155131 (2019)

of canonical forms for each tensor: upper canonical, left
canonical, and right canonical, depending on which index
was finally left. The three canonical forms are shown in the
following diagrammatic notation:

.

The line on the right side represents the identity matrix.
It is technically easy to canonicalize a tensor in the TTN.

For example, we can start from one end of the tree and use
the QR decomposition of the tensor to push the noncanonical
part of the tensor to the adjacent tensor. By repeating this
step, finally, one will push all noncanonical parts of the TTN
to just one tensor, called the central tensor, and all other
tensors are in one of the three canonical forms. Analogous
to the mixed-canonical form of MPSs, we call this form the
mixed-canonical form of the TTN.

Once the TTN is in the canonical form, many calculations
become simple, for example, the normalization factor Z fi-
nally becomes the squared norm of a tensor:

, (9)

where the orange tensor represents the noncanonical central
tensor in an arbitrary position. The direction of all the ten-
sors’ canonical forms is pointed toward the direction of the
central tensor. After all, to get the normalization Z , the only
calculation we need to do is the trace of multiplication of the
central tensor by its complex conjugate.

General tensor networks have a gauge degree of freedom
on their virtual bond. One can insert a pair of unitary matrices
UU −1 in the virtual bond without changing the final contrac-
tion results. This could damage the accuracy of the training
algorithm and brings additional computational complexity.
Fortunately, for acyclic tensor networks like the TTN, the
canonical form fixes this degree of freedom.

D. Data representations

In this work, we consider binary data, such as black and
white images, so the local dimension of the Hilbert space of
each physical bond is 2. As illustrated in Fig. 2, each index for
the lowest-layer tensors has two components, corresponding
to the two possible values of the connected pixels. The pixels
can be simply vectorized from the image to a vector, as
explored in [14] for the MPS Born machine, which we call
one-dimensional (1D) representation, as it basically does not
use any features in the two-dimensional (2D) structure of the
images.

Compared with the MPS, a significant advantage of
the TTN is that it can easily achieve the two-dimensional

(b) (c)

(a)

FIG. 2. (a) The TTN with 2D structure. Changing the 1D order
of data with the 2D order is equivalent to using the TTN with 2D
structure replacing Fig. 1(b). (b) The 1D order of data. (c) The 2D
order of data.

modeling of natural images. Figure 2(a) shows the two-
dimensional modeling of the TNN. In this architecture, each
tensor is responsible for one local area of pixels, which
greatly reduces the artificial fake long-range correlations.
Hence, we call it the 2D representation. Clearly, the 2D
representation keeps the model structure of Fig. 1, while only
requiring reshuffling the data index to proper order, as shown
in Figs. 2(b) and 2(c) [21,38].

In practice, in order to ensure that the number of input
pixels is a power of 2, we may artificially add some pixels that
are always zero. If the input data are the 1D permutation, we
add those zero pixels to the two ends of the one-dimensional
chain; if it is 2D, we add to the outermost edge of the
2D lattice. This is analogous to the “padding” operation in
convolution networks.

E. Training algorithm of the TTN

As we introduced in Sec. II A, the cost function we used
in the training is the negative log likelihood [Eq. (1)], which
is also the KL divergence between the target empirical data
distribution and the probability distribution of our model, up
to a constant.

A standard way to minimize the cost function is the
stochastic gradient descent algorithm (SGD). Unlike the tra-
ditional SGD, which updates all trainable parameters at the
same time, in the TTN we have a sweeping process; that
is, it iteratively updates each tensor based on the gradient

155131-4

MPS

TTN

(S. Cheng et al, Phys. Rev. B 99, 155131 (2019).)

TREE TENSOR NETWORKS FOR GENERATIVE MODELING PHYSICAL REVIEW B 99, 155131 (2019)

101 102

Dmax

0

10

20

30

40

50

60

70

N
LL

ln(|T |)

FIG. 5. Training the NLL and sampling images for a |T | = 100
binarized MNIST data set. ln(|T |) is the theoretical minimum of the
NLL. The TTN exactly remembers all the information of the images
when Dmax = |T |.

of 50 000 images, a validation set of 10 000 images, and a
test set of 10 000 images. Each of them contains handwritten
digits of 28 × 28 pixels with a value of 0 or 1. In order to
facilitate comparison with other work, we directly use the
same standard binary MNIST data set that has been used in
the analysis of deep belief networks and has been widely
recognized by the machine learning community [43]. The
data set can be downloaded directly from the corresponding
website [44].

We did three experiments on the binary MNIST data set.
In the first experiment we used 100 randomly selected images
to train TTNs with different Dmax. The results are shown in
Fig. 5, where we can see that as the NLL gradually decreases,
the quality of the generated samples becomes better. The
training NLL will decrease to its theoretical minimum as Dmax
increases to |T | while the sampling image will be exactly the
same as the one in the training set.

In Fig. 6 we plot the two-site correlation function of pixels.
In each row, we randomly select three pixels, then calculate
the correlation function of the selected pixels with all other
pixels. The values of the correlations are represented by
color. The real correlations extracted from the original data
are illustrated in the top row, and correlations constructed
from the learned MPS and TTN are shown in the bottom
rows for comparison. For the TTN and MPS, Dmax is 50
and 100, respectively, which corresponds to the models with
the smallest test NLL. As we can see, in the original data
set, the correlation between pixels consists of short-range
correlation and a small number of long-range correlations.
However, the MPS model can faithfully represent the short-
range correlation of pixels, while the TTN model performs
well in both short-range and long-range correlations.

Next, we carried out experiments using the whole MNIST
data set with 50 000 training images to quantitatively compare
the performance of the TTN with existing popular machine
learning models. The performance is characterized by evalu-
ating the NLL on the 10 000 test images. We also applied the
same data set to the tree-structure factor graph and the MPS
generative model and compare using the same data set the test

-0.2

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

0.4

0.6

0.8

FIG. 6. Two-site correlation of pixels extracted from the original
data (first row), the MPS (second row), and the TTN model (third
row). We randomly choose three pixels at the tenth row of the images.
The Dmax of the TTN is 50; the Dmax of the MPS is 100, which
corresponds to the models with the smallest test NLL.

NLL with RBM, VAE, and PixelCNN, which currently gives
the state-of-the-art performance. Among these results, RBM
and VAE evaluate only approximately the partition function
and hence give only an approximate NLL. However, the
TTN and MPS together with PixelCNN are able to evaluate
exactly the partition function and give exact NLL values.

The results are shown in Table I, where we can see that
the test NLL obtained by the tree-structure factor graph is
175.8, and the result of the MPS is 101.45, with corresponding
Dmax = 100. For the TTN in a 1D data representation [as
depicted in Fig. 2(b)] with Dmax = 50, the test NLL already
reduces to 96.88. With the same Dmax, the TTN performed on
a 2D data representation [as depicted in Figs. 2(a) and 2(c)]
can do even better, giving a NLL around 94.25. However, we
see from Table I that when compared to the state-of-the-art
machine learning models, the tensor network models still have
a lot of space to improve: the RBM using 500 hidden neurons
and 25-step contrastive divergence could reach a NLL of
approximately 86.3, and PixelCNN with seven layers gives
a NLL around 81.3.

In Fig. 7 we draw the sampled images from the TTN
trained on 50 000 MNIST images, using the sampling

TABLE I. Test NLL of different models for the binary MNIST
data set.

Model Test NLL

Tree factor graph 175.8
MPS 101.5
TTN, 1D 96.9
TTN, 2D 94.3
RBM 86.3a [43]
VAE 84.8a [45]
PixelCNN 81.3 [10]

aApproximated NLL.

155131-7

TN

Nikita Gourianov et. al., Nat. Comput. Sci. 2, 20 (2022).

ARTICLESNATURE COMPUTATIONAL SCIENCE

The utility of tensor networks in fluid dynamics goes beyond the
INSE. Future avenues of investigation for MPS include compress-
ible flows, in which the Mach number is an important parameter,
and transport of scalar quantities under both passive and chemi-
cally reactive conditions where the effects of Prandtl, Peclet and
Damkohler numbers35 must be taken into account. It would be
interesting to examine how these parameters affect the fidelity of
low-χ MPS simulations. Furthermore, as tensor network methods
are naturally suited to tackle high-dimensional problems, their
applicability to the transported probability density function (PDF)
of turbulent reactive flows36 should be considered. In these flows,
in addition to temporal and spatial variations, the PDF is a func-
tion of the 3D velocity field and all of the pertinent scalar variables
(energy, pressure and species mass fractions)37. With just ten species
(a very simple chemical kinetics model), the unsteady PDF must
be resolved in a 17D space. High-fidelity modeling and simulation
of such complex flows can potentially be enabled through a well-
chosen tensor network ansatz.

The close connection of our tensor network-based approach
to quantum physics points towards the prospect of solving the
Navier–Stokes equations on a quantum computer. Recently, several
algorithms for solving nonlinear partial differential equations on
quantum computers have been proposed38–40. In particular, the work
in ref. 38 introduces tensor networks as a programming paradigm
for quantum computers, which makes our approach especially well
suited for quantum hardware implementations (see Supplementary
Section 5 for details). Replacing classical floating point operations
by quantum gates reduces the scaling with bond dimension to ~χ2
(Supplementary Section 5). In addition, potentially exponential
speed-ups are possible by choosing an optimized quantum network
that goes beyond the MPS ansatz for encoding the solution38,41,42. In
this way, our work holds the promise of enabling large-scale compu-
tational fluid dynamics calculations that are well beyond the scope
of current approaches.

Methods
Schmidt decomposition. We consider a 1D system and scale all lengths with its
spatial dimension Lbox. We discretize the spatial domain [0, 1] of the velocity u
with N bits into 2N grid points rq = q/2N with q = 0, 1, …, 2N − 1. Next, we introduce
n = 1, …, N − 1 bipartitions of this grid into coarse and !ne subgrids. For a given
n, the coarse subgrid comprises the points Xk = k/2n with k = 0, …, 2n − 1. "e
spacing between neighboring points is thus 2−n and this de!nes the coarse length
scale. To each coarse grid point Xk is attached a !ne subgrid with points xl = l/2N
with l = 0, 1, …, 2(N − n) − 1, and adjacent points are separated by the !ne length scale
2−N. In this way, any point rq of the 1D grid can be written as rq = Xk + xl. Finally,
we arrange the function values u(rq) = u(Xk + xl) into a 2n × 2N − n matrix where
the rows and columns correspond to increments along the coarse and !ne grids,
respectively. Performing a singular value decomposition (SVD) on this matrix12,13
gives the desired Schmidt decomposition of u(rq) at bipartition n:

V(S
R

) =

E(O)
∑

ǿ=�

ȉ

ǿ

3

ǿ

(9
L

)G
ǿ

(Y
M

)� 	�

This is the 1D result corresponding to equation (2). For a full SVD the Schmidt
number takes its maximal value d(n) = Γ1D(n), where Γ �%(O) = NJO (�O �/−O). If,
instead, a truncated SVD is performed by keeping only the d(n) = χ largest singular
values, the error in the L2 norm due to this approximation is

√

∑Γ �%(O)
ǿ=ȕ+�

ȉ

�

ǿ

.
This procedure can be straightforwardly generalized by replacing bits with

quarternaries (2D) or octals (3D), that is, by replacing 1D line segments with
squares (2D) or cubes (3D). The maximal Schmidt numbers are then given by
equation (4) in 2D and equation (5) in 3D.

Matrix product state algorithm. The INSE comprises a coupled set of partial
differential equations for the velocity field V and pressure p:

∇ · 7 = �

Ⱥ7

ȺU

+ (7 · ∇)7 = −∇Q + ȋ∇
�

7

	�

where ν is the kinematic viscosity and ∇ is the nabla operator. After discretizing
the computational domain as described at the beginning of this Article, we

solve equation (7) in time via a second-order Runge–Kutta method by a
variational scheme. Furthermore, we use the penalty method43,44 to satisfy the
incompressibility condition ∇⋅V = 0.

We illustrate the principle of our method by considering a simple Euler time
step. To advance V from time ts to ts + Δt, we minimize the cost function

υ(7∗) = Ȋ ‖ ∇ · 7
∗

‖
�

�

+

‖
7

∗

−7

ɔU

+
(

7 · ∇
)

7 − ȋ∇
�

7‖
�

�

	�

where ∥⋅∥2 is the L2 norm, ∇ is the nabla operator in finite-difference form, V*
is the trial solution at time ts + Δt, and V denotes the solution at the previous time
step ts. The term Ȋ ‖ ∇ · 7

∗

‖
�

�

 in equation (8) enforces ∇⋅V = 0 for sufficiently
large values of the penalty coefficient μ. Note that the penalty method for enforcing
the incompressibility condition removes the pressure p from equation (8). It can be
calculated from the velocity fields via its Poisson equation45.

We represent the flow field V in terms of the MPS ansatz at all time steps ts,
and all operations on V, such as differentiation, are realized via standard matrix
product operators acting on the MPS (ref. 27, p. 591 and ref. 28, p. 22). In this way,
the entire computation is carried out in the MPS manifold M∈D. A derivation of
our minimization scheme is provided in Supplementary Section 4.

Direct numerical simulation algorithm. Our DNS scheme is based on a second-
order Runge–Kutta temporal discretization combined with an eighth-order central
finite-difference discretization of the spatial derivatives46 on a Cartesian grid. The
incompressibility condition is enforced through the projection method of Chorin47
at every substep of each full Runge–Kutta time step.

The computational complexity of the DNS scheme is ∼ .MPH. . This is
because it is dominated by the projection step, which is performed through
repeated fast Fourier transforms and inverse fast Fourier transforms that scale
as ∼ .MPH. . If there are just enough gridpoints to resolve all scales from ! to
η, the scheme is DNS and solves the Navier–Stokes equations exactly within the
sufficiently large D of Fig. 1b,c. However, if the finest scales are removed (without
invoking any subgrid scale model) such that the smallest remaining resolved scale
is considerably larger than η, then the scheme becomes an URDNS operating
within the scale-restricted W ⊂D. The Navier–Stokes equations cannot be solved
exactly within W due to the finest scales being subject to unphysical numerical
dissipation. In comparison, the MPS algorithm operates within the MPS manifold
of M where the interscale correlations are limited while all the scales between !
and η are still present.

Set-up of numerical experiments. For the TDJ simulations, we consider a square
with edge length Lbox with periodic boundary conditions and the initial conditions

7(Y Z U = �) = +(Z) + %(Y Z) 	�

where J(y) is the initial jet profile

+(Z) = F̂

�

V

�

�

[

UBOI

(

Z − Z

NJO

I

)

− UBOI

(

Z − Z

NBY

I

)

− �

]

	��

with the streamwise direction along F̂
�

. u0 is the magnitude of the velocity
differential between the jet and its surroundings, ymin and ymax describe the extent of
the jet and h is the initial thickness of the vortex sheet. These parameters define the
Reynolds number Re = u0h/ν and the timescale T0 = Lbox/u0. The function

% = Ȃ(F̂
�

E

�

+ F̂

�

E

�

) 	��

in equation (9) is a small disturbance of miscellaneous wave modes needed to
initiate the roll-up of the jet. D is statistically homogeneous along F̂

�

 and divergence
free, with

E

�

(Y Z) = �

-

CPY

I

�

[

(Z − Z

NBY

)F−(Z−Z

NBY

)��I�+

(Z − Z

NJO

)F−(Z−Z

NJO

)��I�
]

[TJO(�ɿY�-

CPY

)+

TJO(��ɿY�-

CPY

) + TJO(�ɿY�-

CPY

)]

	��

E

�

(Y Z) = ɿ

[

F

−(Z−Z

NBY

)��I� + F

−(Z−Z

NJO

)��I�
]

×

[� DPT(�ɿY�-

CPY

) + �� DPT(��ɿY�-

CPY

)

+� DPT(�ɿY�-

CPY

)]

	��

δ = u0/(40A) and
" = NBY

YZ

√

E

�

�

+ E

�

�

. The components of the Reynolds stress
tensor shown in Fig. 2b are defined as

Ȓ

JK

(Z U) = V

′

J

V

′

K

 	��

NATURE COMPUTATIONAL SCIENCE | VOL 2 | JANUARY 2022 | 30–37 | www.nature.com/natcomputsci 35

Naiver-Stokes

ARTICLESNATURE COMPUTATIONAL SCIENCE

the number of variables parametrizing the solution (NVPS) by more
than one order of magnitude. The conceptual similarity between the
tensor network algorithm presented here and those used in quan-
tum physics opens the possibility of conducting computational fluid
dynamics on a quantum computer.

Results
Quantifying interscale correlations. Throughout this work we fol-
low the standard approach in computational fluid dynamics and
discretize the computational domain. Each spatial dimension is dis-
cretized by 2N grid points, where N is a positive integer. In this way,
the velocity field

7(U S
R

) =
,∑

J=�

V

J

(U S
R

)F̂
J

	�

and its Cartesian components ui are discrete functions of the grid
points rq, where K is the spatial dimension and F̂

J

 are Cartesian
unit vectors. We measure the interscale correlations by using the
Schmidt (singular value) decomposition to systematically divide the
computational grid into sub-grids, as illustrated in Fig. 1a for K = 2.
We decompose (for details, see the Schmidt decomposition section
in the Methods) each component ui on this 2N × 2N grid into func-
tions R and f on a coarse and a fine subgrid, respectively:

V

J

(U S
R

) =

E(O)∑

ǿ=�

ȉ

ǿ

(U)3
ǿ

(U 9
L

)G
ǿ

(U Y
M

) S

R

= 9

L

+ Y

M

� 	�

Positions Xk correspond to a quadratic grid with 2n × 2n points
(coarse grid), and xl correspond to a fine sub-grid with 2N − n × 2N − n
grid points. The functions Rα and fα obey the orthonormality
condition

∑

L

3

ǿ

(U 9
L

)3
Ȁ

(U 9
L

) =
∑

M

G

ǿ

(U Y
M

)G
Ȁ

(U Y
M

) = Ȃ

ǿȀ

 	�

where δαβ is the Kronecker delta. The parameter n = 1, …, N − 1
labels the possible bipartitions of the square lattice in coarse and
fine grids (in Fig. 1a N = 10 and n = 2). The Schmidt number d(n)
denotes the number of retained terms in the summation in equa-
tion (2), and each product Rαfα is weighted by a Schmidt coefficient
λα ≥ 0. These coefficients appear in descending order λ1 ≥ λ2... ≥ λd(n),
so varying d(n) will only add or remove the least important of
the orthonormal basis functions. Here we take d(n) as a quantita-
tive measure for the interscale correlations of turbulent flows at a
given bipartition n of the lattice: d(n) = 1 corresponds to an uncor-
related product state, and with increasing d(n) the flow becomes
more strongly correlated between the coarse and the fine grid.
Note that although the d(n) = 1 product state exhibits no interscale

0

0

1/4

1/2

3/4

1

1

y/Lbox

x/Lbox

2562

subgrid

1/4 1/2 3/4

a b

d c

45

TDJ, t /T0 = 0.25

TDJ, t /T0 = 0.75

TDJ, t /T0 = 1.25

TDJ, t /T0 = 1.75

, 1,0242 grid

, 2562 grid

, χ99 = 25

TGV, t /T0 = 0.2

TGV, t /T0 = 0.8

TGV, t /T0 = 1.4

TGV, t /T0 = 2

, 2563 grid

, 643 grid

, χ99 = 207

44

43

d
(n

)
d

(n
)

42

4

1
1 2 3 4 5 6

n th bipartition

7 8 9

44

43

χ 9
9 42

4

1

84

83

82

8

1
101 102

TGV (3D)

TDJ (2D)
χ99∼Re0.71

Re
103 1 2 3 4 5 6

n th bipartition
7

Fig. 1 | Interscale correlations of turbulent fluid flows. Panels a and b correspond to a square with edge length Lbox on a 210!×!210 grid. a, The subgrid
structure when decomposing a function ui according to equation (2) for n!=!2. Red dots are the 22!×!22 grid points Xk of the coarse grid. Each blue square
attached to the Xk indicates the quadratic subgrid with the 28!×!28 grid points xk of the fine grid. b, The Schmidt numbers d99(n,!t) on a logarithmic scale
such that the decomposition in equation (2) results in a 99% accurate representation of DNS solutions to the INSE at four different times (Fig. 2). The
domain D indicated by the black dashed line corresponds to DNS. The gray shaded area W is for solutions on a 28!×!28 grid. The blue shaded area M is
for d(n)!≤!25 in equation (2). c, Same as in b but for the 3D simulations shown in Fig. 3. In b and c, T0 is the characteristic timescale on which the quickest
particles in the initial flow fields can traverse the box (Set-up of numerical experiments section in the Methods). d, Scaling of ȕ

��

= NBY E

��

(O U) with the
Reynolds number for the 2D and 3D systems in b and c, respectively.

NATURE COMPUTATIONAL SCIENCE | VOL 2 | JANUARY 2022 | 30–37 | www.nature.com/natcomputsci 31

4 × 4 grid 8 × 8 grid 16 × 16 grid

Nikita Gourianov et. al., Nat. Comput. Sci. 2, 20 (2022).

N

0 1 2 3 154 8 16

 “ ”

TN TN

Nikita Gourianov et. al., Nat. Comput. Sci. 2, 20 (2022).

 “ ”

99%

→

1d

 “ ”

ARTICLESNATURE COMPUTATIONAL SCIENCE

the number of variables parametrizing the solution (NVPS) by more
than one order of magnitude. The conceptual similarity between the
tensor network algorithm presented here and those used in quan-
tum physics opens the possibility of conducting computational fluid
dynamics on a quantum computer.

Results
Quantifying interscale correlations. Throughout this work we fol-
low the standard approach in computational fluid dynamics and
discretize the computational domain. Each spatial dimension is dis-
cretized by 2N grid points, where N is a positive integer. In this way,
the velocity field

7(U S
R

) =
,∑

J=�

V

J

(U S
R

)F̂
J

	�

and its Cartesian components ui are discrete functions of the grid
points rq, where K is the spatial dimension and F̂

J

 are Cartesian
unit vectors. We measure the interscale correlations by using the
Schmidt (singular value) decomposition to systematically divide the
computational grid into sub-grids, as illustrated in Fig. 1a for K = 2.
We decompose (for details, see the Schmidt decomposition section
in the Methods) each component ui on this 2N × 2N grid into func-
tions R and f on a coarse and a fine subgrid, respectively:

V

J

(U S
R

) =

E(O)∑

ǿ=�

ȉ

ǿ

(U)3
ǿ

(U 9
L

)G
ǿ

(U Y
M

) S

R

= 9

L

+ Y

M

� 	�

Positions Xk correspond to a quadratic grid with 2n × 2n points
(coarse grid), and xl correspond to a fine sub-grid with 2N − n × 2N − n
grid points. The functions Rα and fα obey the orthonormality
condition

∑

L

3

ǿ

(U 9
L

)3
Ȁ

(U 9
L

) =
∑

M

G

ǿ

(U Y
M

)G
Ȁ

(U Y
M

) = Ȃ

ǿȀ

 	�

where δαβ is the Kronecker delta. The parameter n = 1, …, N − 1
labels the possible bipartitions of the square lattice in coarse and
fine grids (in Fig. 1a N = 10 and n = 2). The Schmidt number d(n)
denotes the number of retained terms in the summation in equa-
tion (2), and each product Rαfα is weighted by a Schmidt coefficient
λα ≥ 0. These coefficients appear in descending order λ1 ≥ λ2... ≥ λd(n),
so varying d(n) will only add or remove the least important of
the orthonormal basis functions. Here we take d(n) as a quantita-
tive measure for the interscale correlations of turbulent flows at a
given bipartition n of the lattice: d(n) = 1 corresponds to an uncor-
related product state, and with increasing d(n) the flow becomes
more strongly correlated between the coarse and the fine grid.
Note that although the d(n) = 1 product state exhibits no interscale

0

0

1/4

1/2

3/4

1

1

y/Lbox

x/Lbox

2562

subgrid

1/4 1/2 3/4

a b

d c

45

TDJ, t /T0 = 0.25

TDJ, t /T0 = 0.75

TDJ, t /T0 = 1.25

TDJ, t /T0 = 1.75

, 1,0242 grid

, 2562 grid

, χ99 = 25

TGV, t /T0 = 0.2

TGV, t /T0 = 0.8

TGV, t /T0 = 1.4

TGV, t /T0 = 2

, 2563 grid

, 643 grid

, χ99 = 207

44

43

d
(n

)
d

(n
)

42

4

1
1 2 3 4 5 6

n th bipartition

7 8 9

44

43

χ 9
9 42

4

1

84

83

82

8

1
101 102

TGV (3D)

TDJ (2D)
χ99∼Re0.71

Re
103 1 2 3 4 5 6

n th bipartition
7

Fig. 1 | Interscale correlations of turbulent fluid flows. Panels a and b correspond to a square with edge length Lbox on a 210!×!210 grid. a, The subgrid
structure when decomposing a function ui according to equation (2) for n!=!2. Red dots are the 22!×!22 grid points Xk of the coarse grid. Each blue square
attached to the Xk indicates the quadratic subgrid with the 28!×!28 grid points xk of the fine grid. b, The Schmidt numbers d99(n,!t) on a logarithmic scale
such that the decomposition in equation (2) results in a 99% accurate representation of DNS solutions to the INSE at four different times (Fig. 2). The
domain D indicated by the black dashed line corresponds to DNS. The gray shaded area W is for solutions on a 28!×!28 grid. The blue shaded area M is
for d(n)!≤!25 in equation (2). c, Same as in b but for the 3D simulations shown in Fig. 3. In b and c, T0 is the characteristic timescale on which the quickest
particles in the initial flow fields can traverse the box (Set-up of numerical experiments section in the Methods). d, Scaling of ȕ

��

= NBY E

��

(O U) with the
Reynolds number for the 2D and 3D systems in b and c, respectively.

NATURE COMPUTATIONAL SCIENCE | VOL 2 | JANUARY 2022 | 30–37 | www.nature.com/natcomputsci 31

ARTICLESNATURE COMPUTATIONAL SCIENCE

the number of variables parametrizing the solution (NVPS) by more
than one order of magnitude. The conceptual similarity between the
tensor network algorithm presented here and those used in quan-
tum physics opens the possibility of conducting computational fluid
dynamics on a quantum computer.

Results
Quantifying interscale correlations. Throughout this work we fol-
low the standard approach in computational fluid dynamics and
discretize the computational domain. Each spatial dimension is dis-
cretized by 2N grid points, where N is a positive integer. In this way,
the velocity field

7(U S
R

) =
,∑

J=�

V

J

(U S
R

)F̂
J

	�

and its Cartesian components ui are discrete functions of the grid
points rq, where K is the spatial dimension and F̂

J

 are Cartesian
unit vectors. We measure the interscale correlations by using the
Schmidt (singular value) decomposition to systematically divide the
computational grid into sub-grids, as illustrated in Fig. 1a for K = 2.
We decompose (for details, see the Schmidt decomposition section
in the Methods) each component ui on this 2N × 2N grid into func-
tions R and f on a coarse and a fine subgrid, respectively:

V

J

(U S
R

) =

E(O)∑

ǿ=�

ȉ

ǿ

(U)3
ǿ

(U 9
L

)G
ǿ

(U Y
M

) S

R

= 9

L

+ Y

M

� 	�

Positions Xk correspond to a quadratic grid with 2n × 2n points
(coarse grid), and xl correspond to a fine sub-grid with 2N − n × 2N − n
grid points. The functions Rα and fα obey the orthonormality
condition

∑

L

3

ǿ

(U 9
L

)3
Ȁ

(U 9
L

) =
∑

M

G

ǿ

(U Y
M

)G
Ȁ

(U Y
M

) = Ȃ

ǿȀ

 	�

where δαβ is the Kronecker delta. The parameter n = 1, …, N − 1
labels the possible bipartitions of the square lattice in coarse and
fine grids (in Fig. 1a N = 10 and n = 2). The Schmidt number d(n)
denotes the number of retained terms in the summation in equa-
tion (2), and each product Rαfα is weighted by a Schmidt coefficient
λα ≥ 0. These coefficients appear in descending order λ1 ≥ λ2... ≥ λd(n),
so varying d(n) will only add or remove the least important of
the orthonormal basis functions. Here we take d(n) as a quantita-
tive measure for the interscale correlations of turbulent flows at a
given bipartition n of the lattice: d(n) = 1 corresponds to an uncor-
related product state, and with increasing d(n) the flow becomes
more strongly correlated between the coarse and the fine grid.
Note that although the d(n) = 1 product state exhibits no interscale

0

0

1/4

1/2

3/4

1

1

y/Lbox

x/Lbox

2562

subgrid

1/4 1/2 3/4

a b

d c

45

TDJ, t /T0 = 0.25

TDJ, t /T0 = 0.75

TDJ, t /T0 = 1.25

TDJ, t /T0 = 1.75

, 1,0242 grid

, 2562 grid

, χ99 = 25

TGV, t /T0 = 0.2

TGV, t /T0 = 0.8

TGV, t /T0 = 1.4

TGV, t /T0 = 2

, 2563 grid

, 643 grid

, χ99 = 207

44

43

d
(n

)
d

(n
)

42

4

1
1 2 3 4 5 6

n th bipartition

7 8 9

44

43

χ 9
9 42

4

1

84

83

82

8

1
101 102

TGV (3D)

TDJ (2D)
χ99∼Re0.71

Re
103 1 2 3 4 5 6

n th bipartition
7

Fig. 1 | Interscale correlations of turbulent fluid flows. Panels a and b correspond to a square with edge length Lbox on a 210!×!210 grid. a, The subgrid
structure when decomposing a function ui according to equation (2) for n!=!2. Red dots are the 22!×!22 grid points Xk of the coarse grid. Each blue square
attached to the Xk indicates the quadratic subgrid with the 28!×!28 grid points xk of the fine grid. b, The Schmidt numbers d99(n,!t) on a logarithmic scale
such that the decomposition in equation (2) results in a 99% accurate representation of DNS solutions to the INSE at four different times (Fig. 2). The
domain D indicated by the black dashed line corresponds to DNS. The gray shaded area W is for solutions on a 28!×!28 grid. The blue shaded area M is
for d(n)!≤!25 in equation (2). c, Same as in b but for the 3D simulations shown in Fig. 3. In b and c, T0 is the characteristic timescale on which the quickest
particles in the initial flow fields can traverse the box (Set-up of numerical experiments section in the Methods). d, Scaling of ȕ

��

= NBY E

��

(O U) with the
Reynolds number for the 2D and 3D systems in b and c, respectively.

NATURE COMPUTATIONAL SCIENCE | VOL 2 | JANUARY 2022 | 30–37 | www.nature.com/natcomputsci 31

ARTICLESNATURE COMPUTATIONAL SCIENCE

the number of variables parametrizing the solution (NVPS) by more
than one order of magnitude. The conceptual similarity between the
tensor network algorithm presented here and those used in quan-
tum physics opens the possibility of conducting computational fluid
dynamics on a quantum computer.

Results
Quantifying interscale correlations. Throughout this work we fol-
low the standard approach in computational fluid dynamics and
discretize the computational domain. Each spatial dimension is dis-
cretized by 2N grid points, where N is a positive integer. In this way,
the velocity field

7(U S
R

) =
,∑

J=�

V

J

(U S
R

)F̂
J

	�

and its Cartesian components ui are discrete functions of the grid
points rq, where K is the spatial dimension and F̂

J

 are Cartesian
unit vectors. We measure the interscale correlations by using the
Schmidt (singular value) decomposition to systematically divide the
computational grid into sub-grids, as illustrated in Fig. 1a for K = 2.
We decompose (for details, see the Schmidt decomposition section
in the Methods) each component ui on this 2N × 2N grid into func-
tions R and f on a coarse and a fine subgrid, respectively:

V

J

(U S
R

) =

E(O)∑

ǿ=�

ȉ

ǿ

(U)3
ǿ

(U 9
L

)G
ǿ

(U Y
M

) S

R

= 9

L

+ Y

M

� 	�

Positions Xk correspond to a quadratic grid with 2n × 2n points
(coarse grid), and xl correspond to a fine sub-grid with 2N − n × 2N − n
grid points. The functions Rα and fα obey the orthonormality
condition

∑

L

3

ǿ

(U 9
L

)3
Ȁ

(U 9
L

) =
∑

M

G

ǿ

(U Y
M

)G
Ȁ

(U Y
M

) = Ȃ

ǿȀ

 	�

where δαβ is the Kronecker delta. The parameter n = 1, …, N − 1
labels the possible bipartitions of the square lattice in coarse and
fine grids (in Fig. 1a N = 10 and n = 2). The Schmidt number d(n)
denotes the number of retained terms in the summation in equa-
tion (2), and each product Rαfα is weighted by a Schmidt coefficient
λα ≥ 0. These coefficients appear in descending order λ1 ≥ λ2... ≥ λd(n),
so varying d(n) will only add or remove the least important of
the orthonormal basis functions. Here we take d(n) as a quantita-
tive measure for the interscale correlations of turbulent flows at a
given bipartition n of the lattice: d(n) = 1 corresponds to an uncor-
related product state, and with increasing d(n) the flow becomes
more strongly correlated between the coarse and the fine grid.
Note that although the d(n) = 1 product state exhibits no interscale

0

0

1/4

1/2

3/4

1

1

y/Lbox

x/Lbox

2562

subgrid

1/4 1/2 3/4

a b

d c

45

TDJ, t /T0 = 0.25

TDJ, t /T0 = 0.75

TDJ, t /T0 = 1.25

TDJ, t /T0 = 1.75

, 1,0242 grid

, 2562 grid

, χ99 = 25

TGV, t /T0 = 0.2

TGV, t /T0 = 0.8

TGV, t /T0 = 1.4

TGV, t /T0 = 2

, 2563 grid

, 643 grid

, χ99 = 207

44

43

d
(n

)
d

(n
)

42

4

1
1 2 3 4 5 6

n th bipartition

7 8 9

44

43

χ 9
9 42

4

1

84

83

82

8

1
101 102

TGV (3D)

TDJ (2D)
χ99∼Re0.71

Re
103 1 2 3 4 5 6

n th bipartition
7

Fig. 1 | Interscale correlations of turbulent fluid flows. Panels a and b correspond to a square with edge length Lbox on a 210!×!210 grid. a, The subgrid
structure when decomposing a function ui according to equation (2) for n!=!2. Red dots are the 22!×!22 grid points Xk of the coarse grid. Each blue square
attached to the Xk indicates the quadratic subgrid with the 28!×!28 grid points xk of the fine grid. b, The Schmidt numbers d99(n,!t) on a logarithmic scale
such that the decomposition in equation (2) results in a 99% accurate representation of DNS solutions to the INSE at four different times (Fig. 2). The
domain D indicated by the black dashed line corresponds to DNS. The gray shaded area W is for solutions on a 28!×!28 grid. The blue shaded area M is
for d(n)!≤!25 in equation (2). c, Same as in b but for the 3D simulations shown in Fig. 3. In b and c, T0 is the characteristic timescale on which the quickest
particles in the initial flow fields can traverse the box (Set-up of numerical experiments section in the Methods). d, Scaling of ȕ

��

= NBY E

��

(O U) with the
Reynolds number for the 2D and 3D systems in b and c, respectively.

NATURE COMPUTATIONAL SCIENCE | VOL 2 | JANUARY 2022 | 30–37 | www.nature.com/natcomputsci 31

smaller scale larger scale

ARTICLES NATURE COMPUTATIONAL SCIENCE

correlations, it is still highly correlated in space because the fine grid
dependence is repeated.

Truncating the Schmidt decomposition in equation (2) approxi-
mates ui in an orthonormal time-dependent basis that evolves with
the fluid flow to optimally capture spatially correlated structures.
This is in contrast to classical scientific computing techniques
(implemented through, for example, finite-difference or spectral
methods) where the bases are structure-agnostic; that is, they are
chosen a priori and disregard any structure in the solution.

We first apply the decomposition in equation (2) to DNS solu-
tions of the INSE (equation (7)) for the TDJ shown in the top row of
Fig. 2a. The TDJ comprises a central jet flow along the x direction,
and Kelvin–Helmholtz instabilities in the boundary layer of the jet
eventually cause it to collapse (see equations (9)–(15) for the initial
flow conditions). We decompose each velocity component accord-
ing to equation (2), which is an exact representation if d(n) = Γ2D(n)
with (for details, see Supplementary Section 2)

Γ
�%(O) = NJO(�O �/−O)� 	�

Figure 1b shows the Schmidt numbers d99(n, t) such that equation
(2) represents the DNS solutions for the velocity fields with 99%

accuracy in the L2 norm (more details on the Schmidt coefficients
are provided in Supplementary Section 1). We find that d99(n, t) are
well below their maximal values Γ2D(n) for n > 1. More specifically,
we define ȕ

��

= NBY E

��

(O U) as the maximal value of d99 for all n
and time steps. We obtain χ99 = 25, and the interscale correlations
captured by equation (2) with E(O) = NJO

(
Γ

�%(O) ��
)
 are shown

by the blue-shaded area M in Fig. 1b. d99(n, t) is entirely contained
within this blue area. Note that the Schmidt numbers are shown on
a logarithmic scale in Fig. 1b, and thus the area M is much smaller
than the area D corresponding to DNS.

We obtain qualitatively similar results for the DNS solutions
to the TGV in 3D, where vortex stretching causes a single, large,
ordered fluctuation to collapse into a turbulent flurry of small-scale
structures (see the top row in Fig. 3a for visualization and equation
(16) in the Methods for the initial flow conditions). In three spatial
dimensions, the representation in equation (2) is exact if d(n) equals
(Supplementary Section 2)

Γ
�%(O) = NJO (�O �/−O)� 	�

The Schmidt numbers d99(n, t) resulting in a 99% accurate represen-
tation of the DNS solutions are shown in Fig. 1c. We find χ99 = 207,

a

0.7

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

0.5DNS

y/
L b

ox

x/Lbox

χ = 118

χ = 74

χ = 33

3622 grid

2562 grid

1282 grid

DNS

χ = 118

χ = 74

χ = 33

3622 grid

2562 grid

1282 grid

0.3

0.7

0.5

0.3

0.7

0.5

0.3

0.7

0.5

0.3

0.7

0.5

0.3

0.7

0.5

0.3

0.7

0.5

0.3

0.7

0 0.5 1.0 1.5 2.0

–0.04 –0.02 0 0.02 0.04

0.5

y/
L b

ox

t /T0

τ12/(Lbox/T0)
2

0.3

0.7

0.5

0.3

0.7

0.5

0.3

0.7

0.5

0.3

0.7

0.5

0.3

0.7

0.5

0.3

0.7

0.5

0.3

–97 –50 0 50 97

b

 × V/T0

∆

Fig. 2 | 2D temporally developing jet. Dynamical simulation of the INSE in 2D for a planar jet streaming along x with Re!=!1,000, as defined in the Set-up
of numerical experiments section in the Methods. a, Snapshots of the vorticity and velocity fields taken at t/T0!=!0.25, 0.75, 1.25, 1.75 (left to right).
Red corresponds to positive vorticity (counter-clockwise flow) and blue to negative vorticity (clockwise). The top row corresponds to DNS results on
a quadratic 210!×!210 grid (cf. Fig. 1a). Rows 2–4 are MPS results with different maximal bond dimensions χ. The bottom three rows are for URDNS on
quadratic grids, as indicated. b, Reynolds stress τ12 (equation (14)) between the streamwise and cross-stream directions as a function of time and y
coordinate. Red (blue) corresponds to positive (negative) stress.

NATURE COMPUTATIONAL SCIENCE | VOL 2 | JANUARY 2022 | 30–37 | www.nature.com/natcomputsci32

Nikita Gourianov et. al., Nat. Comput. Sci. 2, 20 (2022).

1 MPS

1 2N

(2 3

2

22 23

t =0.25 t =0.75 t =1.25 t =1.75

grid

MPS

•

•

•

•

•

•

•

•
•
•

SQAI 3

https://sqai.jp/

https://sqai.jp/

506 | Nature | Vol 574 | 24 OCTOBER 2019

Article
developed fast, high-fidelity gates that can be executed simultaneously
across a two-dimensional qubit array. We calibrated and benchmarked
the processor at both the component and system level using a powerful
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling
the output of a pseudo-random quantum circuit11,13,14. Random circuits
are a suitable choice for benchmarking because they do not possess
structure and therefore allow for limited guarantees of computational
hardness10–12. We design the circuits to entangle a set of quantum bits
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum
interference, the probability distribution of the bitstrings resembles
a speckled intensity pattern produced by light interference in laser
scatter, such that some bitstrings are much more likely to occur than
others. Classically computing this probability distribution becomes
exponentially more difficult as the number of qubits (width) and number
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a
method called cross-entropy benchmarking11,12,14, which compares how
often each bitstring is observed experimentally with its corresponding
ideal probability computed via simulation on a classical computer. For
a given circuit, we collect the measured bitstrings {xi} and compute the
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary
Information), which is the mean of the simulated probabilities of the
bitstrings we measured:

F P x= 2 " ()# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi
computed for the ideal quantum circuit, and the average is over the
observed bitstrings. Intuitively, FXEB is correlated with how often we
sample high-probability bitstrings. When there are no errors in the
quantum circuit, the distribution of probabilities is exponential (see
Supplementary Information), and sampling from this distribution will
produce F = 1XEB . On the other hand, sampling from the uniform
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB
between 0 and 1 correspond to the probability that no error has occurred
while running the circuit. The probabilities P(xi) must be obtained from
classically simulating the quantum circuit, and thus computing FXEB is
intractable in the regime of quantum supremacy. However, with certain
circuit simplifications, we can obtain quantitative fidelity estimates of
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient
width and depth such that the classical computing cost is prohibitively
large. This is a difficult task because our logic gates are imperfect and
the quantum states we intend to create are sensitive to errors. A single
bit or phase flip over the course of the algorithm will completely shuffle
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists
of a two-dimensional array of 54 transmon qubits, where each qubit is
tunably coupled to four nearest neighbours, in a rectangular lattice. The

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this
device is achieving high-fidelity single- and two-qubit operations, not
just in isolation but also while performing a realistic computation with
simultaneous gate operations on many qubits. We discuss the highlights
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a
macroscopic quantum state, such that currents and voltages behave
quantum mechanically2,30. Our processor uses transmon qubits6, which
can be thought of as nonlinear superconducting resonators at 5–7 GHz.
The qubit is encoded as the two lowest quantum eigenstates of the
resonant circuit. Each transmon has two controls: a microwave drive
to excite the qubit, and a magnetic flux control to tune the frequency.
Each qubit is connected to a linear resonator used to read out the qubit
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring
qubits using a new adjustable coupler31,32. Our coupler design allows us
to quickly tune the qubit–qubit coupling from completely off to 40 MHz.
One qubit did not function properly, so the device uses 53 qubits and
86 couplers.

The processor is fabricated using aluminium for metallization and
Josephson junctions, and indium for bump-bonds between two silicon
wafers. The chip is wire-bonded to a superconducting circuit board
and cooled to below 20 mK in a dilution refrigerator to reduce ambient
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics,

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular
array of 54 qubits (grey), each connected to its four nearest neighbours with
couplers (blue). The inoperable qubit is outlined. b, Photograph of the
Sycamore chip.

F. Arute, et al., Nature 574, 505 (2019)
google " "

2
or " "

508 | Nature | Vol 574 | 24 OCTOBER 2019

Article

single-qubit gates chosen randomly from X Y W{ , , } on all qubits,
followed by two-qubit gates on pairs of qubits. The sequences of gates
which form the ‘supremacy circuits’ are designed to minimize the circuit
depth required to create a highly entangled state, which is needed for
computational complexity and classical hardness.

Although we cannot compute FXEB in the supremacy regime, we can
estimate it using three variations to reduce the complexity of the circuits.
In ‘patch circuits’, we remove a slice of two-qubit gates (a small fraction
of the total number of two-qubit gates), splitting the circuit into two
spatially isolated, non-interacting patches of qubits. We then compute
the total fidelity as the product of the patch fidelities, each of which can
be easily calculated. In ‘elided circuits’, we remove only a fraction of the
initial two-qubit gates along the slice, allowing for entanglement
between patches, which more closely mimics the full experiment while
still maintaining simulation feasibility. Finally, we can also run full
‘verification circuits’, with the same gate counts as our supremacy cir-
cuits, but with a different pattern for the sequence of two-qubit gates,
which is much easier to simulate classically (see also Supplementary
Information). Comparison between these three variations allows us to
track the system fidelity as we approach the supremacy regime.

We first check that the patch and elided versions of the verification
circuits produce the same fidelity as the full verification circuits up to
53 qubits, as shown in Fig. 4a. For each data point, we typically collect
Ns = 5 × 106 total samples over ten circuit instances, where instances
differ only in the choices of single-qubit gates in each cycle. We also
show predicted FXEB values, computed by multiplying the no-error prob-
abilities of single- and two-qubit gates and measurement (see also Sup-
plementary Information). The predicted, patch and elided fidelities all
show good agreement with the fidelities of the corresponding full cir-
cuits, despite the vast differences in computational complexity and
entanglement. This gives us confidence that elided circuits can be used
to accurately estimate the fidelity of more-complex circuits.

The largest circuits for which the fidelity can still be directly verified
have 53 qubits and a simplified gate arrangement. Performing random
circuit sampling on these at 0.8% fidelity takes one million cores 130
seconds, corresponding to a million-fold speedup of the quantum pro-
cessor relative to a single core.

We proceed now to benchmark our computationally most difficult
circuits, which are simply a rearrangement of the two-qubit gates. In
Fig. 4b, we show the measured FXEB for 53-qubit patch and elided ver-
sions of the full supremacy circuits with increasing depth. For the larg-
est circuit with 53 qubits and 20 cycles, we collected Ns = 30 × 106 samples
over ten circuit instances, obtaining F = (2.24 ±0.21) × 10XEB

−3 for the
elided circuits. With 5σ confidence, we assert that the average fidelity

of running these circuits on the quantum processor is greater than at
least 0.1%. We expect that the full data for Fig. 4b should have similar
fidelities, but since the simulation times (red numbers) take too long to
check, we have archived the data (see ‘Data availability’ section). The
data is thus in the quantum supremacy regime.

The classical computational cost
We simulate the quantum circuits used in the experiment on classical
computers for two purposes: (1) verifying our quantum processor and
benchmarking methods by computing FXEB where possible using sim-
plifiable circuits (Fig. 4a), and (2) estimating FXEB as well as the classical
cost of sampling our hardest circuits (Fig. 4b). Up to 43 qubits, we use
a Schrödinger algorithm, which simulates the evolution of the full quan-
tum state; the Jülich supercomputer (with 100,000 cores, 250 terabytes)
runs the largest cases. Above this size, there is not enough random access
memory (RAM) to store the quantum state42. For larger qubit numbers,
we use a hybrid Schrödinger–Feynman algorithm43 running on Google
data centres to compute the amplitudes of individual bitstrings. This
algorithm breaks the circuit up into two patches of qubits and efficiently
simulates each patch using a Schrödinger method, before connecting
them using an approach reminiscent of the Feynman path-integral.
Although it is more memory-efficient, the Schrödinger–Feynman algo-
rithm becomes exponentially more computationally expensive with
increasing circuit depth owing to the exponential growth of paths with
the number of gates connecting the patches.

To estimate the classical computational cost of the supremacy circuits
(grey numbers in Fig. 4b), we ran portions of the quantum circuit simu-
lation on both the Summit supercomputer as well as on Google clusters
and extrapolated to the full cost. In this extrapolation, we account for
the computation cost of sampling by scaling the verification cost with
FXEB, for example43,44, a 0.1% fidelity decreases the cost by about 1,000.
On the Summit supercomputer, which is currently the most powerful
in the world, we used a method inspired by Feynman path-integrals that
is most efficient at low depth44–47. At m = 20 the tensors do not reason-
ably fit into node memory, so we can only measure runtimes up to m = 14,
for which we estimate that sampling three million bitstrings with 1%
fidelity would require a year.

On Google Cloud servers, we estimate that performing the same task
for m = 20 with 0.1% fidelity using the Schrödinger–Feynman algorithm
would cost 50 trillion core-hours and consume one petawatt hour of
energy. To put this in perspective, it took 600 seconds to sample the
circuit on the quantum processor three million times, where sampling
time is limited by control hardware communications; in fact, the net

Single-qubit gate:
25 ns

Qubit
XY control

Two-qubit gate:
12 ns

Qubit 1
Z control

Qubit 2
Z control

Coupler

Cycle 1 2 3 4 5 6 m
Time

ColumnRow

7 8

A B C D C D BA

A

B

D

C

ba

W

W

X

X

Y

0

0

0

0

0

Fig. 3 | Control operations for the quantum supremacy circuits. a, Example
quantum circuit instance used in our experiment. Every cycle includes a layer
each of single- and two-qubit gates. The single-qubit gates are chosen randomly
from X Y W{ , , }, where W X Y= (+)/ 2 and gates do not repeat sequentially.
The sequence of two-qubit gates is chosen according to a tiling pattern,
coupling each qubit sequentially to its four nearest-neighbour qubits. The

couplers are divided into four subsets (ABCD), each of which is executed
simultaneously across the entire array corresponding to shaded colours. Here
we show an intractable sequence (repeat ABCDCDAB); we also use different
coupler subsets along with a simplifiable sequence (repeat EFGHEFGH, not
shown) that can be simulated on a classical computer. b, Waveform of control
signals for single- and two-qubit gates.

=

google " " F. Arute, et al., Nature 574, 505 (2019)

10,000 304 (cf. = 200)
Y. A. Liu, et al., Gordon bell Prize in SC21 (2021), TN

https://www.doi.org/10.1145/3458817.3487399

•
•

ZE-FENG GAO et al. PHYSICAL REVIEW RESEARCH 2, 023300 (2020)

FIG. 1. (a) Graphical representation of the weight matrix W in a
fully connected layer. The blue circles represent neurons, e.g., pixels.
The solid line connecting an input neuron xi with output neuron
y j represents the weight element Wji. (b) MPO factorization of the
weight matrix W . The local operators w(k) are represented by filled
circles. The hollow circles denote the input and output indices, il and
jl , respectively. Given ik and jk , w(k)[jk, ik] is a matrix.

different kernels are used to extract different features. A
graphical representation of W is shown in Fig. 1(a).

Usually, the number of elements or neurons, Nx and Ny, are
very large, and thus there are a huge number of parameters
to be determined in a fully connected layer [9]. The convo-
lutional layer reduces the variational parameters by grouping
the input elements into many partially overlapped kernels, and
one output element is connected to one kernel. The number of
variational parameters in a convolutional layer is determined
by the number of kernels and the size of each kernel. It could
be much less than that in a fully connected layer. However, the
total number of parameters in all the convolutional layers can
still be very large in a deep neural network which contains
many convolutional layers [10]. To train and store these
parameters raises a big challenge in this field. First, it is time
consuming to train and optimize these parameters, and may
even increase the probability of overfitting. This would limit
the generalization power of deep neural networks. Second,
it needs a big memory space to store these parameters. This
would limit its applications where the space of hard disk is
strongly confined; for example, on mobile terminals.

There are similar situations in the context of quantum in-
formation and condensed-matter physics. In a quantum many-
body system, the Hamiltonian or any other physical operator
can be expressed as a higher-order tensor in the space spanned
by the local basis states [33]. To represent exactly a quantum
many-body system, the total number of parameters that need
to be introduced can be extremely huge, and should in prin-
ciple grow exponentially with the system size (or the size of
each “image” in the language of neural network). The matrix
product operator (MPO) was originally proposed in physics to
characterize the short-range entanglement in one-dimensional
quantum systems [34,35], and is now a commonly used
approach to represent effectively a higher-order tensor or
Hamiltonian with short-range interactions. Mathematically, it
is simply a tensor-train approximation [36,37] that is used to
factorize a higher-order tensor into a sequential product of
the so-called local tensors. Using the MPO representation, the
number of variational parameters needed is greatly reduced

since the number of parameters contained in an MPO just
grows linearly with the system size. Nevertheless, it turns
out that to provide an efficient and faithful representation
of the systems with short-range interactions whose entangle-
ment entropies are upper bounded [38,39] or, equivalently,
the systems with finite excitation gaps in the ground states.
The application of MPOs in condensed-matter physics and
quantum information science has achieved great successes
[40,41] in the past decade.

In this paper, we propose to solve the parameter problem in
neural networks by employing the MPO representation, which
is illustrated in Fig. 1(b) and expressed in Eq. (5). The starting
point is the observation that the linear transformations in a
commonly used deep neural network have a number of similar
features as the quantum operators, which may allow us to
simplify their representations. In a fully connected layer, for
example, it is well known that the rank of the weight matrix
is strongly restricted [42–44] due to short-range correlations
or entanglements among the input pixels. This suggests that
we can safely use a lower-rank matrix to represent this layer
without affecting its prediction power. In a convolutional
layer, the correlations of images are embedded in the kernels,
whose sizes are generally very small in comparison with the
whole image size. This implies that the “extracted features”
from this convolution can be obtained from very local clusters.
In both cases, a dense weight matrix is not absolutely neces-
sary to perform a faithful linear transformation. This peculiar
feature of linear transformations results from the fact that the
information hidden in a data set is just short-range correlated.
Thus, to accurately reveal the intrinsic features of a data set,
it is sufficient to use a simplified representation that catches
more accurately the key features of local correlations. This
motivates us to adopt MPOs to represent linear transformation
matrices in deep neural networks.

There have been several applications of tensor network
structures in neural networks [37,45–50]. Our approach dif-
fers from them by the following aspects: (1) It is physically
motivated, emphasizes more on the local structure of the
relevant information, and helps to understand the success of
deep neural networks. (2) It works in the framework of neural
networks, in the sense that the multiple-layer structure and
activation functions are still retained and the parameters are
entirely optimized through algorithms developed in neural
networks. (3) It is a one-dimensional representation, and is
flexible to represent the linear transformations including both
the fully connected layers and the entire convolutional layers.
(4) It is also used to characterize the complexity of image data
sets. (5) A systematic study has been done. These issues will
become clear in the following sections.

The rest of the paper is structured as follows. In Sec. II,
we present the way the linear layers can be represented by
MPO and the training algorithm of the resulting network. In
Sec. III, we apply our method systematically to five main
neural networks, including FC2, LeNet-5, VGG, ResNet, and
DenseNet on two widely used data sets, namely, MNIST and
CIFAR-10. Experiments on more data sets can be found in
Sec. II. A in the Supplemental Material (SM) [51]. Finally, in
Sec. IV, we discuss the relation with previous efforts and the
possibility to construct a framework of neural networks based
on the matrix product representations in the future. In the SM

023300-2

xi: input neuron yi: output neuron

: x yWij

W MPS

Z.-F. Gao et al, Phys. Rev. Research 2, 023300 (2020).

ZE-FENG GAO et al. PHYSICAL REVIEW RESEARCH 2, 023300 (2020)

For convenience, we use MPO-Net to represent a deep neu-
ral network with all or partial linear layers being represented
by MPOs. Moreover, we denote an MPO, defined by Eq. (5),
as

MJ1,J2,...,Jn
I1,I2,...,In

(D). (8)

To quantify the compressibility of MPO-net with respect to a
neural network, we define its compression ratio ρ as

ρ =
∑

l N (l)
mpo∑

l N (l)
ori

, (9)

where
∑

l is to sum over the linear layers whose transfor-
mation tensors are replaced by MPO. N (l)

ori and N (l)
mpo are the

number of parameters in the lth layer in the original and MPO
representations, respectively. The smaller is the compression
ratio, the fewer number of parameters is used in the MPO
representation.

Furthermore, to examine the performance of a given neural
network, we train the network m times independently to obtain
a test accuracy a with a standard deviation σ defined by

a = ā ± σ, (10)

σ = 1√
m − 1

[
m∑

i=1

(ai − ā)2

]1/2

, (11)

where ai is the test accuracy of the i-th training procedure. ā
is the average of {ai}. The results presented in this paper are
obtained with m = 5.

A. MNIST data set

We start from the identification of handwritten digits in
the MNIST data set [57], which consists of 60 000 digits for
training and 10 000 digits for testing. Each image is a square
of 28 × 28 grayscale pixels, and all the images are divided
into ten classes corresponding to numbers 0 ∼ 9, respectively.

1. FC2

We first test the MPO representation in the simplest text-
book structure of neural network, i.e., FC2 [56]. FC2 consists
of only two fully connected layers whose weight matrices
have 784 × 256 and 256 × 10 elements, respectively. We re-
place these two weight matrices, respectively, by M4,4,4,4

4,7,7,4 (D)
and M1,1,10,1

4,4,4,4 (4) in the corresponding MPO representation.
Here we fix the bond dimension in the second layer to 4, and
only allow the bond dimension to vary in the first layer.

Figure 2 compares the results obtained with FC2 and the
corresponding MPO-Net. The test accuracy of MPO-Net in-
creases when the bond dimension D is increased. It reaches the
accuracy of the normal FC2 when D = 16. Even for the D = 2
MPO-Net, which has only 1024 parameters, about 200 times
less than the original FC2, the test accuracy is already very
good. This shows that the linear transformations in FC2 are
very local and can indeed be effectively represented by MPOs.
The compression ratio of MPO-Net decreases with increasing
D. But even for D = 16, the compression ratio is still below
8%, which indicates that the number of parameters to be
trained can be significantly reduced without any accuracy loss.

2 4 6 8 10 12 14 16 18 20 22

0.972

0.976

0.980

0.984

Test Accuracy

Te
st
A
cc
ur
ac
y

Bond Dimension

0.00

0.02

0.04

0.06

0.08

0.10

Compression Ratio Co
m
pr
es
sio
n
Ra
tio

FIG. 2. Performance of the MPO representations in FC2 on
MNIST. The solid straight line denotes the test accuracy obtained
by the normal FC2, 98.35% ± 0.2%, and the dashed straight lines
are plotted to indicate its error bar.

2. LeNet-5

We further test MPO-Net with the famous LeNet-5 net-
work [2], which is the first instance of convolutional neural
networks. LeNet-5 has five linear layers. Among them, the last
convolutional layer and the two fully connected layers contain
the most parameters. We represent these three layers by three
MPOs, which are structured as M2,5,6,2

2,10,10,2(4), M2,3,7,2
2,5,6,2 (4), and

M1,5,2,1
2,3,7,2 (2), respectively. The compression ratio is ρ ∼ 0.05.
Table I shows the results obtained with the original and

MPO representations of LeNet-5. We find that the test ac-
curacy of LeNet-5 can be faithfully reproduced by MPO-
Net. Since LeNet-5 is the first and prototypical convolutional
neural network, this success gives us confidence in using the
MPO presentation in deeper neural networks.

B. CIFAR-10 data set

CIFAR-10 is a more complex data set [58]. It consists of
50 000 images for training and 10 000 images for testing. Each
image is a square of 32 × 32 RGB pixels. All the images
in this data set are divided into ten classes corresponding to
airplane, automobile, ship, truck, bird, cat, deer, dog, frog, and
horse, respectively. To have a good classification accuracy,
deeper neural networks with many convolutional layers are
used. To show the effectiveness of MPO representation, as a
preliminary test, we use MPOs only on the fully connected

TABLE I. Test accuracy a and compression ratios ρ obtained in
the original and MPO representations of LeNet-5 on MNIST and
VGG on CIFAR-10.

Original Rep MPO-Net

Data set Network a (%) a (%) ρ

MNIST LeNet-5 99.17 ± 0.04 99.17 ± 0.08 0.05
CIFAR-10 VGG-16 93.13 ± 0.39 93.76 ± 0.16 ∼0.0005

VGG-19 93.36 ± 0.26 93.80 ± 0.09 ∼0.0005

023300-4

:ρ
: (%)a

•

•

•

•

•

•

•

•

A

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• :

 (SGC 169), (2021)

• 2022 2

• , 2017 10

•

 2018

•

• R. Orús, “A practical introduction to tensor networks: Matrix product states and projected
entangled pair states”, Annals. of Physics 349, 117 (2014).

• Tao Xiang, “Density matrix and tensor matrix renormalization”, Cambridge University Press, 2023.

• tensornetwork.org “Review Articles and Learning Resources”

https://www.saiensu.co.jp/search/?isbn=4910054690224&y=2022
https://www.jstage.jst.go.jp/article/butsuri/72/10/72_702/_article/-char/ja/
https://doi.org/10.14989/235546
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://tensornetwork.org
https://tensornetwork.org/reviews_resources.html

